【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A、B兩點(diǎn)的縱坐標(biāo)分別為3,1,反比例函數(shù)y=的圖象經(jīng)過(guò)A,B兩點(diǎn),則點(diǎn)D的坐標(biāo)為( )
A. (2﹣1,3)B. (2+1,3)
C. (2﹣1,3)D. (2+1,3)
【答案】D
【解析】
過(guò)點(diǎn)A作x軸的垂線,與CB的延長(zhǎng)線交于點(diǎn)E,根據(jù)A,B兩點(diǎn)的縱坐標(biāo)分別為3,1,可得出橫坐標(biāo),即可求得AE,BE,再根據(jù)勾股定理得出AB,根據(jù)菱形的面積公式:底乘高即可得出答案.
過(guò)點(diǎn)A作x軸的垂線,與CB的延長(zhǎng)線交于點(diǎn)E,
∵A,B兩點(diǎn)在反比例函數(shù)y=的圖象上且縱坐標(biāo)分別為3,1,
∴A,B橫坐標(biāo)分別為1,3,
∴AE=2,BE=2,
∴AB=2,
∵四邊形ABCD是菱形
∴點(diǎn)D的坐標(biāo)是:(1+2,3)
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果批發(fā)商經(jīng)銷一種高檔水果,如果每千克盈利5元,每天可售出200千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)價(jià)不變的情況下,若每千克漲價(jià)0.1元,銷售量將減少1千克
(1)現(xiàn)該商場(chǎng)保證每天盈利1500元,同時(shí)又要照顧顧客,那么每千克應(yīng)漲價(jià)多少元?
(2)若該商場(chǎng)單純從經(jīng)濟(jì)利益角度考慮,這種水果每千克漲價(jià)多少元,使該商場(chǎng)獲利最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABC中,AC=BC,過(guò)C作CD//AB.若AD平分∠CAB,則下列說(shuō)法錯(cuò)誤的是( )
A. BC=CD
B. BO:OC=AB:BC
C. △CDO≌△BAO
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),沿B→C→A勻速運(yùn)動(dòng)到點(diǎn)A,圖2是點(diǎn)P運(yùn)動(dòng)時(shí),線段BP的長(zhǎng)度y隨時(shí)間x變化的函數(shù)關(guān)系圖象,其中M為曲線部分的最低點(diǎn)下列說(shuō)法錯(cuò)誤的是( 。
A. △ABC是等腰三角形B. AC邊上的高為4
C. △ABC的周長(zhǎng)為16D. △ABC的面積為10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說(shuō)明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫(xiě)出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC交AC于點(diǎn)E,AC的反向延長(zhǎng)線交⊙O于點(diǎn)F.
(1)試判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若∠C=30°,⊙O的半徑為6,求弓形AF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=2,將線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到線段CE,線段BD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BF,連接EF,則圖中陰影部分的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,在五邊形ABCDE中,AB=AE,∠B=∠BAE=∠AED=90°,∠CAD=45°,試猜想BC,CD,DE之間的數(shù)量關(guān)系.小明經(jīng)過(guò)仔細(xì)思考,得到如下解題思路:
將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△AEF,由∠B=∠AED=90°,得∠DEF=180°,即點(diǎn)D,E,F三點(diǎn)共線,易證△ACD≌ ,故BC,CD,DE之間的數(shù)量關(guān)系是 ;
(2)如圖2,在四邊形ABCD中,AB=AD,∠ABC+∠D=180°,點(diǎn)E,F分別在邊CB,DC的延長(zhǎng)線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.
(3)如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D,E均在邊BC上,且∠DAE=45°,若BD=2,CE=3,則DE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若一次函數(shù)y=ax+b和反比例函數(shù)y=-滿足a+c=2b,則稱為y=ax2+bx+c為一次函數(shù)和反比例函數(shù)的“等差”函數(shù).
(1)判斷y=x+b和y=-是否存在“等差”函數(shù)?若存在,寫(xiě)出它們的“等差”函數(shù);
(2)若y=5x+b和y=-存在“等差”函數(shù),且“等差”函數(shù)的圖象與y=-的圖象的一個(gè)交點(diǎn)的橫坐標(biāo)為1,求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(3)若一次函數(shù)y=ax+b和反比例函數(shù)y=-(其中a>0,c>0,a=b)存在“等差”函數(shù),且y=ax+b與“等差”函數(shù)有兩個(gè)交點(diǎn)A(x1,y1)、B(x2,y2),試判斷“等差”函數(shù)圖象上是否存在一點(diǎn)P(x,y)(其中x1<x<x2),使得△ABP的面積最大?若存在,用c表示△ABP的面積的最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com