【題目】張師傅準備用長為8cm的銅絲剪成兩段,以圍成兩個正方形的線圈,設(shè)剪成的兩段銅絲中的一段的長為xcm,圍成的兩個正方形的面積之和為Scm2
(1)求S與x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)當x取何值時,S取得最小值,并求出這個最小值.

【答案】
(1)解:設(shè)一段鐵絲的長度為x,另一段為(8﹣x),則邊長分別為 x, (8﹣x),

則S= x2+ (8﹣x)(8﹣x)= x2﹣x+4;自變量的取值范圍:0<x<8


(2)解:S= (x﹣4)2+2,

所以當x=4cm時,S最小,最小為2cm2


【解析】(1)設(shè)一段鐵絲的長度為x,另一段為(8﹣x),則邊長分別為 x, (8﹣x),然后根據(jù)正方形的面積公式及S=一個正方形的面積+另一個正方形的面積,列出函數(shù)關(guān)系式,直接根據(jù)實際情況寫出自變量的取值范圍;
(2)將(1)中得到的函數(shù)關(guān)系式化為頂點式,由于該函數(shù)圖像的開口向上,根據(jù)頂點坐標得出當x=4cm時,S最小,最小為2cm2。
【考點精析】掌握二次函數(shù)的最值是解答本題的根本,需要知道如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,數(shù)軸上點A對應的有理數(shù)為10,點P以每秒1個單位長度的速度從點A出發(fā),點Q以每秒3個單位長度的速度從原點O出發(fā),且P、Q兩點同時向數(shù)軸正方向運動,設(shè)運動時間為t秒.

1)當t2時,PQ兩點對應的有理數(shù)分別是   ,   ,PQ   ;

2)當PQ8時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)下面是李老師帶領(lǐng)同學們探索的近似值的過程,請你仔細閱讀并補充完整:我們知道,面積是2的正方形的邊長是,且>1,則設(shè)=1+x(0<x<1),可畫出如圖所示的示意圖.由各部分面積之和等于總面積.可列方程為:x2+   +1=2,∵0<x<1,∴認為x2是個較為接近于0的數(shù),令x2≈0,因此省略x2后,得到方程:   ,解得,x   ,即=1+x   

(2)請仿照(1)中的方法,若設(shè)=1.7+y(0<y<1),求的近似值(要求畫出示意圖,標明數(shù)據(jù),并將的近似值精確到千分位)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的線段AB及點P,給出如下定義:

若點P滿足PA=PB,則稱P為線段AB的“軸點”,其中,當0°<∠APB<60°時,稱P為線段AB的“遠軸點”;當60°≤∠APB≤180°時,稱P為線段AB的“近軸點”.

(1)如圖1,點A,B的坐標分別為(-2,0),(2,0),則在,, 中,線段AB的“近軸點”是 .

(2)如圖2,點A的坐標為(3,0),點By軸正半軸上,且∠OAB=30°.

①若P為線段AB的“遠軸點”,直接寫出點P的橫坐標t的取值范圍 ;

②點Cy軸上的動點(不與點B重合且BCAB),若Q為線段AB的“軸點”,當線段QBQC的和最小時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是直線AB上一點,OD平分∠BOC,OE平分∠AOC,則下列說法錯誤的是(

A. DOE為直角B. DOC和∠AOE互余

C. AOD和∠DOC互補D. AOE和∠BOC互補

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)計算并觀察下列各式:

1個:(ab)(a+b)______;

2個:(ab)(a2+ab+b2)______;

3個:(ab)(a3+a2b+ab2+b3)_______;

……

這些等式反映出多項式乘法的某種運算規(guī)律.

(2)猜想:若n為大于1的正整數(shù),則(ab)(an1+an2b+an3b2+……+a2bn3+abn2+bn1)________;

(3)利用(2)的猜想計算:2n1+2n2+2n3+……+23+22+1______

(4)拓廣與應用:3n1+3n2+3n3+……+33+32+1_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為深化課程改革,某校為學生開設(shè)了形式多樣的社團課程,為了解部分社團課程在學生中最受歡迎的程度,學校隨機抽取七年級名學生進行調(diào)查,從:文學鑒賞,:科學探究,:文史天地,:趣味數(shù)學四門課程中選出你喜歡的課程(被調(diào)查的每名學生必選且只能選擇一門課程),并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計圖:

1_________,_________

2)扇形統(tǒng)計圖中,所對應的扇形的圓心角度數(shù)是________度;

3)請根據(jù)以上信息直接在答題卡中補全條形統(tǒng)計圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小紅根據(jù)學習“數(shù)與式”積累的經(jīng)驗,想通過“由特殊到一般”的方法探究下面二次根式的運算規(guī)律.

下面是小紅的探究過程,請補充完整:

(1)具體運算,發(fā)現(xiàn)規(guī)律.

特例1:,

特例2:

特例3:,

特例4: (填寫一個符合上述運算特征的例子).

(2)觀察、歸納,得出猜想.

如果為正整數(shù),用含的式子表示上述的運算規(guī)律為:

(3)證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了預測本校應屆畢業(yè)女生“一分鐘跳繩”項目考試情況,從九年級隨機抽取部分女生進行該項目測試,并以測試數(shù)據(jù)為樣本,繪制出如圖所示的部分頻數(shù)分布直方圖(從左到右依次分為六個小組,每小組含最小值,不含最大值)和扇形統(tǒng)計圖.根據(jù)統(tǒng)計圖提供的信息解答下列問題:

(1)補全頻數(shù)分布直方圖 , 并指出這個樣本數(shù)據(jù)的中位數(shù)落在第小組;(1)
(2)若測試九年級女生“一分鐘跳繩”次數(shù)不低于130次的成績?yōu)閮?yōu)秀,本校九年級女生共有260人,請估計該校九年級女生“一分鐘跳繩”成績?yōu)閮?yōu)秀的人數(shù);
(3)如測試九年級女生“一分鐘跳繩”次數(shù)不低于170次的成績?yōu)闈M分,在這個樣本中,從成績?yōu)閮?yōu)秀的女生中任選一人,她的成績?yōu)闈M分的概率是多少?

查看答案和解析>>

同步練習冊答案