觀(guān)察下列式子:
1
1
(
1
2
-
1
3
)
=
1
2
2
3
1
2
(
1
3
-
1
4
)
=
1
3
3
8
1
3
(
1
4
-
1
5
)
=
1
4
4
15

則第n個(gè)式子是
分析:第n個(gè)式子中:左邊的被開(kāi)方數(shù):三個(gè)分子都是1,三個(gè)分母依次是n,n+1,n+2;右邊的根號(hào)外邊是左邊被開(kāi)方數(shù)的第二個(gè),根號(hào)內(nèi)的分子和根號(hào)外的分母相同,分母是分子的平方減1.
解答:解:第n個(gè)式子是
1
n
(
1
n+1
-
1
n+2
)
=
1
n+1
n+1
(n+1)2-1
點(diǎn)評(píng):此類(lèi)題的規(guī)律要分別觀(guān)察等式的左邊和右邊的規(guī)律,還要注意等式兩邊的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀(guān)察下列式子:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4

(1)請(qǐng)你根據(jù)上述規(guī)律寫(xiě)出第n個(gè)式子
(2)利用規(guī)律解方程:
1
x(x+1)
+
1
(x+1)(x+2)
+
1
(x+2)(x+3)
+
1
(x+3)(x+4)
+
1
(x+4)(x+5)
=
2x-1
x(x+5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀(guān)察下列式子:
1
1
+
1
2
=
1+2
1×2
=
3
2
    
1
2
+
1
3
=
2+3
2×3
=
5
6
      
1
3
+
1
4
=
3+4
3×4
=
7
12

請(qǐng)根據(jù)你發(fā)現(xiàn)的規(guī)律計(jì)算:1-
3
2
+
5
6
-
7
12
+…-
19
90
+
21
110

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

觀(guān)察下列式子:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4

(1)請(qǐng)你根據(jù)上述規(guī)律寫(xiě)出第n個(gè)式子
(2)利用規(guī)律解方程:
1
x(x+1)
+
1
(x+1)(x+2)
+
1
(x+2)(x+3)
+
1
(x+3)(x+4)
+
1
(x+4)(x+5)
=
2x-1
x(x+5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

觀(guān)察下列式子:
1
1
(
1
2
-
1
3
)
=
1
2
2
3
;
1
2
(
1
3
-
1
4
)
=
1
3
3
8
;
1
3
(
1
4
-
1
5
)
=
1
4
4
15

則第n個(gè)式子是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案