(2009•蘭州)如圖,某公園的一座石拱橋是圓弧形(劣弧),其跨度為24米,拱的半徑為13米,則拱高為( )

A.5米
B.8米
C.7米
D.5
【答案】分析:先構(gòu)建直角三角形,再利用勾股定理和垂徑定理計(jì)算.
解答:解:因?yàn)榭缍華B=24m,拱所在圓半徑為13m,
所以找出圓心O并連接OA,延長CD到O,構(gòu)成直角三角形,
利用勾股定理和垂徑定理求出DO=5,
進(jìn)而得拱高CD=CO-DO=13-5=8.故選B.
點(diǎn)評:本題主要考查直角三角形和垂徑定理的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2009•蘭州)如圖①,正方形ABCD中,點(diǎn)A、B的坐標(biāo)分別為(0,10),(8,4),點(diǎn)C在第一象限.動點(diǎn)P在正方形ABCD的邊上,從點(diǎn)A出發(fā)沿A?B?C?D勻速運(yùn)動,同時(shí)動點(diǎn)Q以相同速度在x軸正半軸上運(yùn)動,當(dāng)P點(diǎn)到達(dá)D點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動,設(shè)運(yùn)動的時(shí)間為t秒.
(1)當(dāng)P點(diǎn)在邊AB上運(yùn)動時(shí),點(diǎn)Q的橫坐標(biāo)x(長度單位)關(guān)于運(yùn)動時(shí)間t(秒)的函數(shù)圖象如圖②所示,請寫出點(diǎn)Q開始運(yùn)動時(shí)的坐標(biāo)及點(diǎn)P運(yùn)動速度;
(2)求正方形邊長及頂點(diǎn)C的坐標(biāo);
(3)在(1)中當(dāng)t為何值時(shí),△OPQ的面積最大,并求此時(shí)P點(diǎn)的坐標(biāo);
(4)如果點(diǎn)P、Q保持原速度不變,當(dāng)點(diǎn)P沿A?B?C?D勻速運(yùn)動時(shí),OP與PQ能否相等?若能,寫出所有符合條件的t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2009•蘭州)如圖①,正方形ABCD中,點(diǎn)A、B的坐標(biāo)分別為(0,10),(8,4),點(diǎn)C在第一象限.動點(diǎn)P在正方形ABCD的邊上,從點(diǎn)A出發(fā)沿A?B?C?D勻速運(yùn)動,同時(shí)動點(diǎn)Q以相同速度在x軸正半軸上運(yùn)動,當(dāng)P點(diǎn)到達(dá)D點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動,設(shè)運(yùn)動的時(shí)間為t秒.
(1)當(dāng)P點(diǎn)在邊AB上運(yùn)動時(shí),點(diǎn)Q的橫坐標(biāo)x(長度單位)關(guān)于運(yùn)動時(shí)間t(秒)的函數(shù)圖象如圖②所示,請寫出點(diǎn)Q開始運(yùn)動時(shí)的坐標(biāo)及點(diǎn)P運(yùn)動速度;
(2)求正方形邊長及頂點(diǎn)C的坐標(biāo);
(3)在(1)中當(dāng)t為何值時(shí),△OPQ的面積最大,并求此時(shí)P點(diǎn)的坐標(biāo);
(4)如果點(diǎn)P、Q保持原速度不變,當(dāng)點(diǎn)P沿A?B?C?D勻速運(yùn)動時(shí),OP與PQ能否相等?若能,寫出所有符合條件的t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年重慶市一中中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•蘭州)如圖,已知A(-4,n),B(2,-4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與x軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;
(3)求方程kx+b-=0的解(請直接寫出答案);
(4)求不等式kx+b-<0的解集(請直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年初中數(shù)學(xué)第一輪復(fù)習(xí)教學(xué)案例.4.4.反比例函數(shù)(解析版) 題型:解答題

(2009•蘭州)如圖,已知A(-4,n),B(2,-4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與x軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;
(3)求方程kx+b-=0的解(請直接寫出答案);
(4)求不等式kx+b-<0的解集(請直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年甘肅省蘭州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•蘭州)如圖①,正方形ABCD中,點(diǎn)A、B的坐標(biāo)分別為(0,10),(8,4),點(diǎn)C在第一象限.動點(diǎn)P在正方形ABCD的邊上,從點(diǎn)A出發(fā)沿A?B?C?D勻速運(yùn)動,同時(shí)動點(diǎn)Q以相同速度在x軸正半軸上運(yùn)動,當(dāng)P點(diǎn)到達(dá)D點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動,設(shè)運(yùn)動的時(shí)間為t秒.
(1)當(dāng)P點(diǎn)在邊AB上運(yùn)動時(shí),點(diǎn)Q的橫坐標(biāo)x(長度單位)關(guān)于運(yùn)動時(shí)間t(秒)的函數(shù)圖象如圖②所示,請寫出點(diǎn)Q開始運(yùn)動時(shí)的坐標(biāo)及點(diǎn)P運(yùn)動速度;
(2)求正方形邊長及頂點(diǎn)C的坐標(biāo);
(3)在(1)中當(dāng)t為何值時(shí),△OPQ的面積最大,并求此時(shí)P點(diǎn)的坐標(biāo);
(4)如果點(diǎn)P、Q保持原速度不變,當(dāng)點(diǎn)P沿A?B?C?D勻速運(yùn)動時(shí),OP與PQ能否相等?若能,寫出所有符合條件的t的值;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案