【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,根據(jù)圖象解答下列問題:
(1)寫出方程ax2+bx+c=0的兩個(gè)根;
(2)當(dāng)x為何值時(shí),y>0?當(dāng)x為何值時(shí),y<0?
(3)寫出y隨x的增大而減小的自變量x的取值范圍.
【答案】(1)x1=1,x2=3;(2)當(dāng)1< x< 3時(shí),y> 0;當(dāng)x< 1或x> 3時(shí),y< 0;
(3)當(dāng)x> 2時(shí),y隨x的增大而減。
【解析】
(1)根據(jù)圖象與x軸交點(diǎn)的坐標(biāo)即可得到方程ax2+bx+c=0的兩個(gè)根;
(2)根據(jù)圖象與x軸交點(diǎn)的坐標(biāo)即可得到不等式ax2+bx+c>0的解集;
(3)由于拋物線是軸對稱的圖形,根據(jù)圖象與x軸交點(diǎn)的坐標(biāo)即可得到對稱軸方程,由此再確定y隨x的增大而減小的自變量x的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前世界上最高的電視塔是廣州新電視塔.如圖所示,新電視塔高AB為610米,遠(yuǎn)處有一棟大樓,某人在樓底C處測得塔頂B的仰角為45°,在樓頂D處測得塔頂B的仰角為39°.
(1)求大樓與電視塔之間的距離AC;
(2)求大樓的高度CD(精確到1米).
(參考數(shù)據(jù):sin39°≈0.6293,cos39°≈0.7771,tan39°≈0.8100)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有兩條邊長的比值為的直角三角形叫做“魅力三角形”我們知道,命題“直角三角形30°角所對的直角邊等于斜邊的一半”是一個(gè)真命題,所以“含30°角的直角三角形”就是一個(gè)“魅力三角形”
(1)設(shè)“魅力三角形”較短直角邊為a,較長直角邊為b,請你直接寫出的值.
(2)如圖,在Rt△ABC中,∠B=90°,BC=6,D是AB的中點(diǎn),點(diǎn)E在CD上,滿足AD=DE,連結(jié)AE,過點(diǎn)D作DF∥AE交BC于點(diǎn)F
①如果點(diǎn)E是CD的中點(diǎn),求證:△BDF是“魅力三角形”
②如果△BDF是“魅力三角形”,且BF=BC,求線段AC的長
(二次根式運(yùn)算提示:()2=n2()2=n2a,比如:(4)2=42()2=16×3=48)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點(diǎn)F,則∠BFC為( )
A. 75°B. 60°C. 55°D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知P(﹣3,m)和 Q(1,m)是拋物線y=x2+bx﹣3上的兩點(diǎn).
(1)求b的值;
(2)將拋物線y=x2+bx﹣3的圖象向上平移k(是正整數(shù))個(gè)單位,使平移后的圖象與x軸無交點(diǎn),求k的最小值;
(3)將拋物線y=x2+bx﹣3的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象,請你結(jié)合新圖象回答:當(dāng)直線y=x+n與這個(gè)新圖象有兩個(gè)公共點(diǎn)時(shí),求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為 4 的等邊△ABC 中,點(diǎn) D 從點(diǎn)A 開始在射線 AB 上運(yùn)動(dòng),速度為 1 個(gè)單位/秒,點(diǎn)F 同時(shí)從 C 出發(fā),以相同的速度沿射線 BC 方向運(yùn)動(dòng),過點(diǎn)D 作 DE⊥AC,連結(jié) DF 交射線 AC 于點(diǎn) G
(1)當(dāng) DF⊥AB 時(shí),求 t 的值;
(2)當(dāng)點(diǎn) D 在線段 AB 上運(yùn)動(dòng)時(shí),是否始終有 DG=GF?若成立,請說明理由。
(3)聰明的斯揚(yáng)同學(xué)通過測量發(fā)現(xiàn),當(dāng)點(diǎn) D 在線段 AB 上時(shí),EG 的長始終等于 AC 的一半,他想當(dāng)點(diǎn)D 運(yùn)動(dòng)到圖 2 的情況時(shí),EG 的長是否發(fā)生變化?若改變,說明理由;若不變,求出 EG 的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從A地到B地的公路需要經(jīng)過C地,圖中AC=10千米,∠CAB=25°,∠CBA=37°。因城市規(guī)劃的需要,將在A,B兩地之間修建一條筆直的公路。
(1)求改直后的公路AB的長;
(2)問:公路改造后比原來縮短了多少千米?
(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于給定的函數(shù),自變量取x1,x2時(shí),對應(yīng)的函數(shù)值分別記為y1,y2.自變量取時(shí).對應(yīng)的函數(shù)值記為,例如一次函數(shù)y=2x+1,自變量取x1,x2時(shí),對應(yīng)的函數(shù)值分別為y1=2x1+1,y2=2x2+1,自變量取時(shí),對應(yīng)的函數(shù)值為=2+1,若對于給定的函數(shù),自變量取x1,x2(x1≠x2)時(shí),總有,則稱函數(shù)為凸凸函數(shù).對于給定的函數(shù)總有,則稱函數(shù)為凹凹函數(shù).對于給定的函數(shù)總有,則稱函數(shù)為平平函數(shù).
(1)求證:函數(shù)y=2x是平平函數(shù);
(2)判斷函數(shù)y=ax2是凸凸函數(shù),凹凹函數(shù)還是平平函數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b與x軸、y軸分別交于點(diǎn)A,B,且OA=8,OB=6,P點(diǎn)是第一象限內(nèi)直線y=kx+b上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合),點(diǎn)P的橫坐標(biāo)為m.
(1)求直線AB的解析式.
(2)C是x軸上一點(diǎn),且OC=2,求△ACP的面積S與m之間的函數(shù)關(guān)系式;
(3)在x軸上是否有在點(diǎn)Q,使以A,B,Q為頂點(diǎn)的三角形是等腰三角形?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com