精英家教網(wǎng)如圖,在Rt△ABC中,∠ACB=90°,D是AB邊上的一點,以BD為直徑的⊙0與邊AC相切于點E,連接DE并延長,與BC的延長線交于點F.
(1)求證:BD=BF;
(2)若BC=12,AD=8,求BF的長.
分析:(1)連接OE,易證OE∥BC,根據(jù)等邊對等角即可證得∠ODE=∠F,則根據(jù)等角對等邊即可求解;
(2)易證△AOE∽△ABC,根據(jù)相似三角形的對應邊的比相等即可證得圓的半徑,即可求解.
解答:精英家教網(wǎng)(1)證明:連接OE,
∵AC是圓的切線,
∴OE⊥AC,
∵BC⊥AC,
∴OE∥BC,
∵O是BD的中點,
∴OE是△BFD的中位線,
∵OE∥BF,
∴∠DEO=∠EFB,
又∵∠ODE=∠OED,
∴∠ODE=∠BFD,
∴BD=BF;

(2)設⊙O的半徑為R,則BD=2R,OD=OE=R  
∵OE∥BC,
∴△AOE∽△ABC,
OE
BC
=
AO
AB
,即
R
12
=
R+8
2R+8
,
解得:R1=8,R2=-6(舍去)
∴BF=BD=2R=16.
點評:本題主要考查了相似三角形的判定與性質(zhì),正確利用△AOE∽△ABC求得圓的半徑是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案