操作實(shí)驗(yàn):

精英家教網(wǎng)

如圖,把等腰三角形沿頂角平分線對折并展開,發(fā)現(xiàn)被折痕分成的兩個(gè)三角形成軸對稱.
所以△ABD≌△ACD,所以∠B=∠C.
歸納結(jié)論:如果一個(gè)三角形有兩條邊相等,那么這兩條邊所對的角也相等.
根據(jù)上述內(nèi)容,回答下列問題:
思考驗(yàn)證:如圖(4),在△ABC中,AB=AC.試說明∠B=∠C的理由;

精英家教網(wǎng)

精英家教網(wǎng)

探究應(yīng)用:如圖(5),CB⊥AB,垂足為A,DA⊥AB,垂足為B.E為AB的中點(diǎn),AB=BC,CE⊥BD.
(1)BE與AD是否相等,為什么?
(2)小明認(rèn)為AC是線段DE的垂直平分線,你認(rèn)為對嗎?說說你的理由;
(3)∠DBC與∠DCB相等嗎試?說明理由.
思考驗(yàn)證:

精英家教網(wǎng)

過A點(diǎn)作AD⊥BC于D,
∴∠ADB=∠ADC=90°,
在Rt△ABD和Rt△ACD中,
AB=AC
AD=AD
,
∴△ABD≌△ACD(HL),
∴∠B=∠C;

探究應(yīng)用:

精英家教網(wǎng)

(1)說明:因?yàn)镃B⊥AB,
∴∠CBA=90°.
∴∠1+∠2=90°.
∵DA⊥AB,
∴∠DAB=90°.
∴∠ADB+∠1=90°.
∴∠ADB=∠2.
在△ADB和△BEC中
∠ADB=∠2
AB=BC
∠DAB=∠EBC=90°
,
∴△DAB≌△EBC(ASA).
∴DA=BE.

(2)∵E是AB中點(diǎn),
∴AE=BE.
∵AD=BE,
∴AE=AD.
在△ABC中,因?yàn)锳B=BC,
∴∠BAC=∠BCA.
∵ADBC,
∴∠DAC=∠BCA.
∴∠BAC=∠DAC.
在△ADC和△AEC中,
AD=AE
∠DAC=∠EAC
AC=AC
,
∴△ADC≌△AEC(SAS).
∴DC=CE.
∴C在線段DE的垂直平分線上.
∵AD=AE,
∴A在線段DE的垂直平分線上.
∴AC垂直平分DE.

(3)∵AC是線段DE的垂直平分線,
∴CD=CE.
∵△ADB≌△BEC,
∴DB=CE.
∴CD=BD.
∴∠DBC=∠DCB.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013屆江蘇省無錫市北塘區(qū)九年級(jí)中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖1,已知有一張三角形紙片ABC的一邊AB=10,若D為AB邊上的點(diǎn),過點(diǎn)D作DE//BC交AC于點(diǎn)E,分別過點(diǎn)D、E作DF⊥BC,EG⊥BC,垂足分別為點(diǎn)F、點(diǎn)G,把三角形紙片ABC分別沿DE、DF、EG按圖1方式折疊,點(diǎn)A、B、C分別落在A´、B´、C´處.若A´、B´、C´在矩形DFGE內(nèi)或者其邊上,且互不重合,此時(shí)我們稱△A´B´C´(即圖中陰影部分)為“重疊三角形”.

(1)實(shí)驗(yàn)操作:當(dāng)AD=4時(shí),①若∠A=90°,AB=AC,請?jiān)趫D2中畫出“重疊三角形”,= ; 
②若AB=AC,BC=12,如圖3,= ;③若∠B=30°,∠C=45°,如圖4,= ;                     
(2)實(shí)驗(yàn)探究:若△ABC為等邊三角形(如圖5),設(shè)AD的長為m,若重疊三角形A´B´C´存在,試用含m的代數(shù)式表示重疊三角形A´B´C´的面積,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省無錫市北塘區(qū)九年級(jí)中考二模數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1,已知有一張三角形紙片ABC的一邊AB=10,若D為AB邊上的點(diǎn),過點(diǎn)D作DE//BC交AC于點(diǎn)E,分別過點(diǎn)D、E作DF⊥BC,EG⊥BC,垂足分別為點(diǎn)F、點(diǎn)G,把三角形紙片ABC分別沿DE、DF、EG按圖1方式折疊,點(diǎn)A、B、C分別落在A´、B´、C´處.若A´、B´、C´在矩形DFGE內(nèi)或者其邊上,且互不重合,此時(shí)我們稱△A´B´C´(即圖中陰影部分)為“重疊三角形”.

(1)實(shí)驗(yàn)操作:當(dāng)AD=4時(shí),①若∠A=90°,AB=AC,請?jiān)趫D2中畫出“重疊三角形”,= ; 

②若AB=AC,BC=12,如圖3,= ;③若∠B=30°,∠C=45°,如圖4,= ;                     

(2)實(shí)驗(yàn)探究:若△ABC為等邊三角形(如圖5),設(shè)AD的長為m,若重疊三角形A´B´C´存在,試用含m的代數(shù)式表示重疊三角形A´B´C´的面積,并寫出m的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案