在矩形ABCD中,O是兩條對角線的交點,AE⊥BD于點E,若0E:OD=1:2,AE=數(shù)學公式cm,則DE=________cm.

3
分析:求出OA=OC=OD=OB,得出等邊三角形AOB,求出∠AOB=60°,求出OA、OE即可.
解答:
解:∵四邊形ABCD是矩形,
∴AC=BD,OA=CO,BO=OD,
∴AO=OD=OC=OB,
∵0E:OD=1:2,
∴OD=2OE=OB,
∴OE=BE,
∵AE⊥BD,
∴AO=AB=OB,
∴△AOB是等邊三角形,
∴∠AOB=60°,
在Rt△AOE中,sin60°=,
∴OA==2(cm),
∴OD=OA=OB=2cm,OE=BE=1cm,
∴DE=2cm+1cm=3cm,
故答案為:3.
點評:本題考查了矩形的性質(zhì),等邊三角形的性質(zhì)和判定,線段垂直平分線性質(zhì),解直角三角形的應用,主要考查學生運用定理進行推理和計算的能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

7、如圖,在矩形ABCD中,DE平分∠ADC交BC于點E,EF⊥AD交AD于點F,若EF=3,AE=5,則AD等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4,BC=7,P是BC邊上與B點不重合的動點,過點P的直線交CD的延長線于R,交AD于Q(Q與D不重合),且∠RPC=45°,設BP=x,梯形ABPQ的面積為y,求y與x之間的函數(shù)關系,并求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,F(xiàn)是BC邊上一點,AF的延長線交DC的延長線于G,DE⊥AG于E,且DE=DC.求證:AE=BF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在矩形ABCD中,AB=8,AD=6,E為AB邊上一點,連接DE,過C作CF垂直DE.
(1)求證:△CDF∽△DEA;
(2)若設CF=x,DE=y,求y與x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AF、BE、CE、DF分別是矩形的四個角的角平分線,E、M、F、N是其交點,求證:四邊形EMFN是正方形.

查看答案和解析>>

同步練習冊答案