【題目】如圖,在水平地面上豎立著一面墻AB,墻外有一盞路燈D.光線DC恰好通過墻的最高點(diǎn)B,且與地面形成37°角.墻在燈光下的影子為線段AC,并測(cè)得AC=5.5米.

1)求墻AB的高度(結(jié)果精確到0.1米);(參考數(shù)據(jù):tan37°≈075,sin37°≈060cos37°≈080

2)如果要縮短影子AC的長度,同時(shí)不能改變墻的高度和位置,請(qǐng)你寫出兩種不同的方法.

【答案】14.1;

2)第一種方法:增加路燈D的高度,

第二種方法:使路燈D向墻靠近.

【解析】

試題(1)由AC=5.5,∠C=37°根據(jù)正切的概念求出AB的長;

2)從邊和角的角度進(jìn)行分析即可.

試題解析:解:(1)在Rt△ABC中,AC=55,∠C=37°,

tanC=

∴AB=AC·tanC=5.5×0.75≈4.1;

2)要縮短影子AC的長度,增大∠C的度數(shù)即可,

即第一種方法:增加路燈D的高度,

第二種方法:使路燈D向墻靠近.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形各邊上分別截取,且,若四邊形的面積為.四邊形面積為,當(dāng),且時(shí),則的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形AOB中,∠AOB=90°,半徑OA=4.將扇形AOB沿過點(diǎn)B的直線折疊,點(diǎn)O恰好落在弧AB上點(diǎn)C處,折痕交OA于點(diǎn)D,則圖中陰影部分的面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校教學(xué)樓與實(shí)驗(yàn)樓的水平間距米,在實(shí)驗(yàn)樓頂部點(diǎn)測(cè)得教學(xué)樓頂部點(diǎn)的仰角是,底部點(diǎn)的俯角是,則教學(xué)樓的高度是____米(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形是矩形,,將沿直線翻折,使點(diǎn)落在點(diǎn)處,軸于點(diǎn),若,則點(diǎn)的坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ab,∠140°,∠280°,則∠3的度數(shù)為( 。

[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/15/2485292109684736/2491850430775296/STEM/0502255e02c3498e9234cb6eaef26eb9.png]

A.120°B.130°C.140°D.110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為6的菱形ABCD中,對(duì)角線AC,BD交點(diǎn)與點(diǎn)O,點(diǎn)P是△ADO的重心.

1)當(dāng)菱形ABCD是正方形時(shí),則PA=________,PD=__________,PO=_________.

2)線段PA,PDPO中是否存在長度保持不變的線段,若存在,請(qǐng)求出該線段的長度,若不存在,請(qǐng)說明理由.

3)求線段PD,DO滿足的等量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說明:A級(jí):8分﹣10分,B級(jí):7分﹣7.9分,C級(jí):6分﹣6.9分,D級(jí):1分﹣5.9分)

根據(jù)所給信息,解答以下問題:

(1)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是   度;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績的中位數(shù)會(huì)落在   等級(jí);

(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績達(dá)到A級(jí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面中,給定線段ABCP兩點(diǎn),點(diǎn)C與點(diǎn)P分布在線段AB的異側(cè),滿足,則稱點(diǎn)C與點(diǎn)P是關(guān)于線段AB的關(guān)聯(lián)點(diǎn).在平面直角坐標(biāo)系xOy中,已知點(diǎn),

1)在,三個(gè)點(diǎn)中,點(diǎn)O與點(diǎn)P是關(guān)于線段AB的關(guān)聯(lián)點(diǎn)的是________;

2)若點(diǎn)C與點(diǎn)P是關(guān)于線段OA的關(guān)聯(lián)點(diǎn),求點(diǎn)P的縱坐標(biāo)m的取值范圍;

3)直線x軸,y軸分別交與點(diǎn)E,F,若在線段AB上存在點(diǎn)P與點(diǎn)O是關(guān)于線段EF的關(guān)聯(lián)點(diǎn),直接寫出b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案