【題目】某公園要修建一個(gè)截面拋物線形的拱門,其最大高度為4.5m,寬度OP為6米,現(xiàn)以地面(OP所在的直線)為x軸建立平面直角坐標(biāo)系(如圖1所示)
(1)求這條拋物線的函數(shù)表達(dá)式;
(2)如圖所示,公園想在拋物線拱門距地面3米處釘兩個(gè)釘子以便拉一條橫幅,請計(jì)算該橫幅的寬度為多少米?
(3)為修建該拱門,施工隊(duì)需搭建一個(gè)矩形“支架“ABCD(由四根木桿AB﹣BC﹣CD﹣DA組成),使B,C兩點(diǎn)在拋物線上.A,D兩點(diǎn)在地面OP上(如圖2所示),請你幫施工隊(duì)計(jì)算一下最多需要準(zhǔn)備多少米該種木桿?
【答案】(1)(2)2(3)最多需要準(zhǔn)備11米該種木桿.
【解析】
(1)把拋物線的解析式設(shè)成頂點(diǎn)式,再代入(6,0),求得結(jié)果;
(2)令y=3,求出x2+3x=3的解,再求其橫坐標(biāo)之差的絕對值便可;
(3)設(shè)B(x,x2+3x),用x表示矩形ABCD的周長,根據(jù)周長關(guān)于x的函數(shù)解析式求出其最大值便可.
解:(1)由題意知拋物線的頂點(diǎn)坐標(biāo)為(3,4.5),則
設(shè)拋物線的解析式為:y=a(x﹣3)2+4.5,
∵拋物線上有一點(diǎn)(6,0),
∴0=9a+4.5,
∴a=﹣,
∴拋物線的解析式為y=﹣+4.5,
即y=(0≤x≤6);
(2)當(dāng)y=3時(shí),=3,
解得,,,
∴該橫幅的寬度為:(3+)﹣(3﹣)=2(米),
答:該橫幅的寬度為2米;
(3)設(shè)B(x,y)
∴B(x,)
∵四邊形ABCD是矩形,
∴AB=DC=,
根據(jù)拋物線的軸對稱性,可得:OA=DP=x,
∴AD=6﹣2x,即BC=6﹣2x,
∴令L=AB+BD+DC+AD=2()+2(6﹣2x)=﹣(x﹣1)2+11.
∴當(dāng)x=1,L最大值為11,
∴AB、BD、DC、AD的長度之和最大值為11米,/span>
答:最多需要準(zhǔn)備11米該種木桿.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形中,,點(diǎn)在邊上,且,點(diǎn)為邊上的任意一點(diǎn)(不與點(diǎn),重合),把沿折疊,當(dāng)點(diǎn)的對應(yīng)點(diǎn)落在的邊上時(shí),的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中放置5個(gè)正方形,點(diǎn)B1在y軸上,點(diǎn)C1、E1、E2、C2、E3、E4、C3在x軸上.若正方形A1B1C1D1的邊長為1,∠B1C1O﹦60,B1C1∥B2C2∥B3C3,則點(diǎn)A3到x軸的距離是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(3,3)、B(-1,0)、C(4,0).
(1)經(jīng)過平移,可使△ABC的頂點(diǎn)A與坐標(biāo)原點(diǎn)O重合,請直接寫出此時(shí)點(diǎn)C的對應(yīng)點(diǎn)C1坐標(biāo);(不必畫出平移后的三角形)
(2)將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到△A′BC′,畫出△A′BC′并寫出A′點(diǎn)的坐標(biāo);
(3)以點(diǎn)A為位似中心放大△ABC,得到△AB2C2,使放大前后的面積之比為1∶4,請你在網(wǎng)格內(nèi)畫出△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為等腰直角△ABC的斜邊(AB為定長線段),E為AB的中點(diǎn),F為AC延長線上的一個(gè)動點(diǎn),線段FB的垂直平分線交線段CE于點(diǎn)O,D為垂足,當(dāng)F點(diǎn)運(yùn)動時(shí),給出下列四個(gè)結(jié)論,其中一定正確的結(jié)論有_____(請?zhí)顚懻_序號)
①O為△ABF的外心;②OF⊥OB;③CE+FC=AB;④FCOB=OEFB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場要經(jīng)營一種新上市的文具,進(jìn)價(jià)為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10件
(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤最大;
(3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案
方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元
請比較哪種方案的最大利潤更高,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初中生對待學(xué)習(xí)的態(tài)度一直是教育工作者關(guān)注的問題之一.為此某市教育局對該市部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請你估計(jì)該市近20000名初中生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把八個(gè)完全相同的小球平分為兩組,每組中每個(gè)分別寫上1,2,3,4四個(gè)數(shù)字,然后分別裝入不透明的口袋內(nèi)攪勻,從第一個(gè)口袋內(nèi)取出一個(gè)數(shù)記下數(shù)字后作為點(diǎn)P的橫坐標(biāo)x,然后再從第二個(gè)口袋中取出一個(gè)球記下數(shù)字后作為點(diǎn)P的縱坐標(biāo),則點(diǎn)P(x,y)落在直線y=﹣x+5上的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,直線y=﹣ x+4 與x軸相交于點(diǎn)A,與直線y= x相交于點(diǎn)P.
(1)求點(diǎn)P的坐標(biāo);
(2)動點(diǎn)E從原點(diǎn)O出發(fā),沿著O→P→A的路線向點(diǎn)A勻速運(yùn)動(E不與點(diǎn)O、A重合),過點(diǎn)E分別作EF⊥x軸于F,EB⊥y軸于B.設(shè)運(yùn)動t秒時(shí), F的坐標(biāo)為(a,0),矩形EBOF與△OPA重疊部分的面積為S.直接寫出: S與a之間的函數(shù)關(guān)系式
(3)若點(diǎn)M在直線OP上,在平面內(nèi)是否存在一點(diǎn)Q,使以A,P,M,Q為頂點(diǎn)的四邊形為矩形且滿足矩形兩邊AP:PM之比為1: 若存在直接寫出Q點(diǎn)坐標(biāo)。若不存在請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com