【題目】如圖1,是的直徑,弦于點,點為上一點,連接、、,交于點.
(1)求證:;
(2)如圖2,連接,交于點,若,求證:是等腰三角形;
(3)如圖3,在(2)的條件下,若,,求的半徑.
科目:初中數(shù)學 來源: 題型:
【題目】已知:AB為⊙O的直徑,C是⊙O上一點,如圖,AB=12,BC=4.BH與⊙O相切于點B,過點C作BH的平行線交AB于點E.
(1)求CE的長;
(2)延長CE到F,使EF=,連接BF并延長BF交⊙O于點G,求BG的長;
(3)在(2)的條件下,連接GC并延長GC交BH于點D,求證:BD=BG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們規(guī)定:平面內(nèi)點A到圖形G上各個點的距離的最小值稱為該點到這個圖形的最小距離d,點A到圖形G上各個點的距離的最大值稱為該點到這個圖形的最大距離D,定義點A到圖形G的距離跨度為R=D-d.
(1)①如圖1,在平面直角坐標系xOy中,圖形G1為以O為圓心,2為半徑的圓,直接寫出以下各點到圖形G1的距離跨度:
A(1,0)的距離跨度______________;
B(-, )的距離跨度____________;
C(-3,-2)的距離跨度____________;
②根據(jù)①中的結果,猜想到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是______________.
(2)如圖2,在平面直角坐標系xOy中,圖形G2為以D(-1,0)為圓心,2為半徑的圓,直線y=k(x-1)上存在到G2的距離跨度為2的點,求k的取值范圍.
(3)如圖3,在平面直角坐標系xOy中,射線OP:y=x(x≥0),⊙E是以3為半徑的圓,且圓心E在x軸上運動,若射線OP上存在點到⊙E的距離跨度為2,求出圓心E的橫坐標xE的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,△ABC繞點C順時針旋轉(zhuǎn)得△A1B1C,當A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1D的長度是( 。
A.B.C.D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形OABC中,AB∥OC,BC⊥x軸于C,A(1,-1),B(3,-1),動點P從O點出發(fā),沿x軸正方向以3個單位/秒的速度運動.過P作PQ⊥OA于Q.設P點運動的時間為t秒(0 < t < ),ΔOPQ與四邊形OABC重疊的面積為S.
(1)求經(jīng)過O、A、B三點的拋物線的解析式并確定頂點M的坐標;
(2)用含t的代數(shù)式表示P、Q兩點的坐標;
(3)將ΔOPQ繞P點逆時針旋轉(zhuǎn)90°,是否存在t,使得ΔOPQ的頂點O或Q落在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由;
(4)求S與t的函數(shù)解析式;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與軸交于點(點在點的左側),與軸交于.
求點的坐標;
若點是拋物線在第二象限部分上的一動點,其橫坐標為求為何值時,圖中陰影部分面積最小,并寫出此時點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】武漢“新冠肺炎”發(fā)生以來,某醫(yī)療公司積極復工,加班加點生產(chǎn)醫(yī)用防護服,為防控一線助力.以下是該公司以往的市場調(diào)查,發(fā)現(xiàn)該公司防護服的日銷售量y(套)與銷售單價x(元)之間滿足一次函數(shù)關系,如下圖所示,關于日銷售利潤w(元)和銷售單價x(元)的幾組對應值如下表:
銷售單價x(元) | 85 | 95 | 105 |
日銷售利潤w(元) | 875 | 1875 | 1875 |
(注:日銷售利潤=日銷售量×(銷售單價一成本單價))
(1)求y關于x的函數(shù)解析式(不要求寫出x的取值范圍);
(2)根據(jù)函數(shù)圖象和表格所提供的信息,填空:
該公司生產(chǎn)的防護服的成本單價是 元,當銷售單價x= 元時,日銷售利潤w最大,最大值是 元;
(3)該公司復工以后,在政府部門的幫助下,原材料采購成本比以往有了下降,平均起來,每生產(chǎn)一套防護服,成本比以前下降5元.該公司計劃開展科技創(chuàng)新,以降低該產(chǎn)品的成本,如果在今后的銷售中,日銷售量與銷售單價仍存在(1)中的關系.若想實現(xiàn)銷售單價為90元時,日銷售利潤不低于3750元的銷售目標,該產(chǎn)品的成本單價應不超過多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線交x軸于A,B兩點,交y軸于點C.直線經(jīng)過點A,C.
(1)求拋物線的解析式;
(2)點P是拋物線上一動點,過點P作x軸的垂線,交直線AC于點M,設點P的橫坐標為m.
①當是直角三角形時,求點P的坐標;
②作點B關于點C的對稱點,則平面內(nèi)存在直線l,使點M,B,到該直線的距離都相等.當點P在y軸右側的拋物線上,且與點B不重合時,請直接寫出直線的解析式.(k,b可用含m的式子表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com