小明和同桌小聰在課后復習時,對課本“目標與評定”中的一道思考題,進行了認真的探索。
【思考題】如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時B到墻C的距離為0.7米,如果梯子的頂端沿墻下滑0.4米,那么點B將向外移動多少米?
(1)請你將小明對“思考題”的解答補充完整:
解:設點B將向外移動x米,即BB1=x,
則B1C=x+0.7,A1C=AC﹣AA1=
而A1B1=2.5,在Rt△A1B1C中,由得方程 ,
解方程得x1= ,x2= ,
∴點B將向外移動 米。
(2)解完“思考題”后,小聰提出了如下兩個問題:
【問題一】在“思考題”中,將“下滑0.4米”改為“下滑0.9米”,那么該題的答案會是0.9米嗎?為什么?
【問題二】在“思考題”中,梯子的頂端從A處沿墻AC下滑的距離與點B向外移動的距離,有可能相等嗎?為什么?
請你解答小聰提出的這兩個問題。
科目:初中數(shù)學 來源: 題型:
2.52-0.72 |
B | 2 1 |
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年浙江杭州蕭山回瀾初中九年級12月階段性測試數(shù)學試卷(解析版) 題型:解答題
小明和同桌小聰在課后做作業(yè)時,對課本中的一道作業(yè)題,進行了認真探索.
【作業(yè)題】如圖1,一個半徑為100m的圓形人工湖如圖所示,弦AB是湖上的一座橋,測得圓周角∠C=45°,求橋AB的長.
小明和小聰經過交流,得到了如下的兩種解決方法:
方法一:延長BO交⊙O與點E,連接AE,得 Rt△ABE,∠E=∠C,∴AB=;
方法二:作AB的弦心距OH,連接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=,∴AB=.
感悟:圓內接三角形的一邊和這邊的對銳角、圓的半徑(或直徑)這三者關系,可構成直角三角形,從而把一邊和這邊的對銳角﹑半徑建立一個關系式.
(1)問題解決:受到(1)的啟發(fā),請你解下面命題:如圖2,點A(3,0)、B(0,),C為直線AB上一點,過A、O、C的⊙E的半徑為2.求線段OC的長.
(2)問題拓展:如圖3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=,D是線段BC上的一個動點,以AD為直徑畫⊙O分別交AB,AC于E,F(xiàn),連結EF, 設⊙O半徑為x, EF為y.①y關于x的函數(shù)關系式;②求線段EF長度的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源:浙江省中考真題 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
小明和同桌小聰在課后復習時,對課本“目標與評定”中的一道思考題,進行了認真的探索。
【思考題】如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時B到墻C的距離為0.7米,如果梯子的頂端沿墻下滑0.4米,那么點B將向外移動多少米?
(1)請你將小明對“思考題”的解答補充完整:
解:設點B將向外移動x米,即BB1=x,
則B1C=x+0.7,A1C=AC﹣AA1=
而A1B1=2.5,在Rt△A1B1C中,由得方程 ,
解方程得x1= ,x2= ,
∴點B將向外移動 米。
(2)解完“思考題”后,小聰提出了如下兩個問題:
【問題一】在“思考題”中,將“下滑0.4米”改為“下滑0.9米”,那么該題的答案會是0.9米嗎?為什么?
【問題二】在“思考題”中,梯子的頂端從A處沿墻AC下滑的距離與點B向外移動的距離,有可能相等嗎?為什么?
請你解答小聰提出的這兩個問題。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com