【題目】如圖,在正方形ABCD中,點E,F分別在邊AD,CD上,

1)若AB6,AECF,點EAD的中點,連接AE,BF

如圖1,求證:BEBF3;

如圖2,連接AC,分別交AE,BFM,M,連接DMDN,求四邊形BMDN的面積.

2)如圖3,過點DDHBE,垂足為H,連接CH,若∠DCH22.5°,則的值為   (直接寫出結(jié)果).

【答案】1)①詳見解析;②12;(2.

【解析】

1)①先求出AE3,進而求出BE,再判斷出△BAE≌△BCF,即可得出結(jié)論;

②先求出BD6,再判斷出△AEM∽△CMB,進而求出AM2,再判斷出四邊形BMDN是菱形,即可得出結(jié)論;

2)先判斷出∠DBH22.5°,再構(gòu)造等腰直角三角形,設(shè)出DH,進而得出HG,BG,即可得出BH,結(jié)論得證.

解:(1)①∵四邊形ABCD是正方形,

ABBCAD6,∠BAD=∠BCD90°,

∵點E是中點,

AEAD3,

RtABE中,根據(jù)勾股定理得,BE3

在△BAE和△BCF中,

∴△BAE≌△BCFSAS),

BEBF,

BEBF3

②如圖2,連接BD,

RtABC中,ACAB6

BD6,

∵四邊形ABCD是正方形,

ADBC,

∴△AEM∽△CMB

,

,

AMAC2

同理:CN2,

MNACAMCN2,

由①知,△ABE≌△CBF,

∴∠ABE=∠CBF

ABBC,∠BAM=∠BCN45°

∴△ABM≌△CBN,

BMBN,

AC是正方形ABCD的對角線,

ABAD,∠BAM=∠DAM45°,

AMAM,

∴△BAM≌△DAM,

BMDM

同理:BNDN,

BMDMDNBN

∴四邊形BMDN是菱形,

S四邊形BMDNBD×MN×6×212;

2)如圖3,設(shè)DHa,

連接BD,

∵四邊形ABCD是正方形,

∴∠BCD90°

DHBH,

∴∠BHD90°

∴點B,C,DH四點共圓,

∴∠DBH=∠DCH22.5°,

BH上取一點G,使BGDG,

∴∠DGH2DBH45°,

∴∠HDG45°=∠HGD

HGHDa,

RtDHG中,DGHDa,

BGa,

BHBG+HGA+A=(+1a,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三邊的中線AD、BE、CF的公共點為G,若SABC=12,則圖中陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,O 為坐標原點,長方形 OABC,點 B 的坐標為(3,8),點 AC 分別在坐標軸上,D OC 的中點.

1)在 x 軸上找一點 P,使得 PDPB 最小,則點 P 的坐標為 ;

2)在 x 軸上找一點 Q,使得|QDQB|最大,求出點 Q 的坐標并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生“自主學(xué)習(xí)、合作交流” 的情況,對某班部分同學(xué)進行了一段時間的跟蹤調(diào)查,將調(diào)查結(jié)果(A:特別好;B:好;C:一般;D:較差)繪制成以下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)補全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中,求 類所占圓心角的度數(shù);
(3)學(xué)校想從被調(diào)查的 類(1名男生2名女生)和D類(男女生各占一半)中分別選取一位同學(xué)進行“一幫一”互助學(xué)習(xí),請用畫樹形圖或列表的方法求所選的兩位同學(xué)恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,ABCD,E為直線CD下方一點,BF平分ABE

1)求證:ABE+∠CE180°

2)如圖2EG平分BEC,過點BBHGE,求FBHC之間的數(shù)量關(guān)系.

3)如圖3CN平分ECD,若BF的反向延長線和CN的反向延長線交于點M,且E+∠M130°,請直接寫出E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CABC,垂足為C,AC2cm,BC6cm,射線BMBQ,垂足為B,動點PC點出發(fā)以1cm/s的速度沿射線CQ運動,點N為射線BM上一動點,滿足PNAB,隨著P點運動而運動,當點P運動_____秒時,△BCA與點PN、B為頂點的三角形全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點M在線段BC上,點EN在線段AC上,EMAB,BEMN分別平分∠ABC和∠EMC.下列結(jié)論:①∠MBN=∠MNB;②∠MBE=∠MEB;③MNBE.其中正確的是( )

A.①②③B.②③C.①③D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+x軸、y軸分別交于點AB,在坐標軸上找點P,使△ABP為等腰三角形,則點P的個數(shù)為( )

A. 2B. 4C. 6D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在矩形ABCD中,對角線ACBD相交于點O,過點O作直線EFBD,且交AD于點E,交BC于點F,連接BE,DF,且BE平分∠ABD

①求證:四邊形BFDE是菱形;

②直接寫出∠EBF的度數(shù).

2)把(1)中菱形BFDE進行分離研究,如圖2,G,I分別在BFBE邊上,且BGBI,連接GD,HGD的中點,連接FH,并延長FHED于點J,連接IJ,IH,IF,IG.試探究線段IHFH之間滿足的關(guān)系,并說明理由;

3)把(1)中矩形ABCD進行特殊化探究,如圖3,矩形ABCD滿足ABAD時,點E是對角線AC上一點,連接DE,作EFDE,垂足為點E,交AB于點F,連接DF,交AC于點G.請直接寫出線段AGGE,EC三者之間滿足的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案