【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長(zhǎng)線上的一點(diǎn),BE=BA,過(guò)E作EF⊥AB,F為垂足.下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正確的是( 。
A.①②③B.①③④C.①②④D.①②③④
【答案】D
【解析】
根據(jù)SAS證△ABD≌△EBC,可得∠BCE=∠BDA,結(jié)合∠BCD=∠BDC可得①②正確;根據(jù)角的和差以及三角形外角的性質(zhì)可得∠DCE=∠DAE,即AE=EC,由AD=EC,即可得③正確;過(guò)E作EG⊥BC于G點(diǎn),證明Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AEF,得到BG=BF和AF=CG,利用線段和差即可得到④正確.
解:①∵BD為△ABC的角平分線,
∴∠ABD=∠CBD,
∴在△ABD和△EBC中,,
∴△ABD≌△EBC(SAS),①正確;
②∵BD為△ABC的角平分線,BD=BC,BE=BA,
∴∠BCD=∠BDC=∠BAE=∠BEA,
∵△ABD≌△EBC,
∴∠BCE=∠BDA,
∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正確;
③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,
∴∠DCE=∠DAE,
∴△ACE為等腰三角形,
∴AE=EC,
∵△ABD≌△EBC,
∴AD=EC,
∴AD=AE=EC.③正確;
④過(guò)E作EG⊥BC于G點(diǎn),
∵E是∠ABC的角平分線BD上的點(diǎn),且EF⊥AB,
∴EF=EG(角平分線上的點(diǎn)到角的兩邊的距離相等),
∵在Rt△BEG和Rt△BEF中,,
∴Rt△BEG≌Rt△BEF(HL),
∴BG=BF,
∵在Rt△CEG和Rt△AFE中,,
∴Rt△CEG≌Rt△AEF(HL),
∴AF=CG,
∴BA+BC=BF+FA+BGCG=BF+BG=2BF,④正確.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a是不為1的有理數(shù),我們把 稱(chēng)為a的差倒數(shù).如:2的差倒數(shù)是=﹣1,﹣1的差倒數(shù)是.已知a1=﹣,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…,依此類(lèi)推.
(1)分別求出a2,a3,a4的值;
(2)求a1+a2+a3+…+a3600的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,D是弧BC的中點(diǎn),DE⊥AC交AC的延長(zhǎng)線于E,⊙O的切線BF交AD的延長(zhǎng)線于F.
(1)求證:DE是⊙O的切線;
(2)若DE=3,⊙O的半徑為5.求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖直線l:y=kx+6與x軸、y軸分別交于點(diǎn)B、C兩點(diǎn),點(diǎn)B的坐標(biāo)是(﹣8,0),點(diǎn)A的坐標(biāo)為(﹣6,0).
(1)求k的值.
(2)若點(diǎn)P是直線l在第二象限內(nèi)一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAC的面積為3,求出此時(shí)直線AP的解析式.
(3)在x軸上是否存在一點(diǎn)M,使得△BCM為等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從2開(kāi)始,連續(xù)的偶數(shù)相加,它們和的情況如下表:
加數(shù)的個(gè)數(shù)n | S |
1 | 2=1×2 |
2 | 2+4=6=2×3 |
3 | 2+4+6=12=3×4 |
4 | 2+4+6+8=20=4×5 |
5 | 2+4+6+8+10=30=5×6 |
(1)若n=8時(shí),則S的值為_____________.
(2)根據(jù)表中的規(guī)律猜想:用n的式子表示S的公式為:S=2+4+6+8+…+2n=__________________.
(3)根據(jù)上題的規(guī)律計(jì)算2+4+6+8+10+…+98+100的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是兩塊完全一樣的含30°角的直角三角尺,分別記做△ABC與△A′B′C′,現(xiàn)將兩塊三角尺重疊在一起,設(shè)較長(zhǎng)直角邊的中點(diǎn)為M,繞中點(diǎn)M轉(zhuǎn)動(dòng)上面的三角尺ABC,使其直角頂點(diǎn)C恰好落在三角尺A′B′C′的斜邊A′B′上.當(dāng)∠A=30°,AC=10時(shí),兩直角頂點(diǎn)C,C′間的距離是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D為BC邊的任意一點(diǎn),以點(diǎn)D為頂點(diǎn)的∠EDF的兩邊分別與邊AB,AC交于點(diǎn)E、F,且∠EDF與∠A互補(bǔ).
(1)如圖1,若AB=AC,D為BC的中點(diǎn)時(shí),則線段DE與DF有何數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出結(jié)論;
(2)如圖2,若AB=kAC,D為BC的中點(diǎn)時(shí),那么(1)中的結(jié)論是否還成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)寫(xiě)出DE與DF的關(guān)系并說(shuō)明理由;
(3)如圖3,若=a,且=b,直接寫(xiě)出= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,Rt△ABC中,∠BAC=90°,AB=5,AC=12,將△ABC沿射線BC方向平移m個(gè)單位長(zhǎng)度到△DEF,頂點(diǎn)A、B、C分別與D、E、F對(duì)應(yīng),若以點(diǎn)A、D、E為頂點(diǎn)的三角形是等腰三角形,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,是邊上的中線,過(guò)作,垂足為,過(guò)作交的延長(zhǎng)線于,則下列結(jié)論正確的是______.(請(qǐng)?zhí)顚?xiě)序號(hào))
①若,則;②;③;④;⑤;⑥連接,則.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com