,則x________

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)課堂上,徐老師出示一道試題:

    如圖(十)所示,在正三角形ABC中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AM=MN.

(1)經(jīng)過思考,小明展示了一種正確的證明過程.請你將證明過程補充完整.

    證明:在AB上截取EA=MC,連結(jié)EM,得△AEM.

    ∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

    又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

                                            

∴△AEM≌△MCN (ASA).∴AM=MN.

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當(dāng)∠A1M1N1=90°時,結(jié)論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請你猜想:當(dāng)∠AnMnNn    °時,結(jié)論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)

    

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年山東省教研片八年級上學(xué)期期中質(zhì)量檢查數(shù)學(xué)卷 題型:解答題

(本題滿分12分)

已知點C為線段AB上一點, 分別以AC、BC為邊在線段AB同側(cè)作△ACD和△BCE, 且CA=CD, CB=CE, ∠ACD=∠BCE, 直線AE與BD交于點F.

(1)如圖1,求證:△ACE≌△DCB。

   (2)如圖1, 若∠ACD=60°, 則∠AFB=      ;

如圖2, 若∠ACD=90°, 則∠AFB=      ;

(3)如圖3, 若∠ACD=β, 則∠AFB=       (用含β的式子表示)

并說明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:湖北省鄂州市2011年中考數(shù)學(xué)試題 題型:解答題

數(shù)學(xué)課堂上,徐老師出示一道試題:

    如圖(十)所示,在正三角形ABC中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AM=MN.

(1)經(jīng)過思考,小明展示了一種正確的證明過程.請你將證明過程補充完整.

    證明:在AB上截取EA=MC,連結(jié)EM,得△AEM.

    ∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

    又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

                                            

∴△AEM≌△MCN (ASA).∴AM=MN.

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當(dāng)∠A1M1N1=90°時,結(jié)論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請你猜想:當(dāng)∠AnMnNn    °時,結(jié)論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)

    

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(山東泰安卷)數(shù)學(xué)解析版 題型:解答題

數(shù)學(xué)課堂上,徐老師出示一道試題:如圖(十)所示,在正三角形ABC中,MBC邊(不含端點B、C)上任意一點,PBC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AMMN

    

(1)經(jīng)過思考,小明展示了一種正確的證明過程.請你將證明過程補充完整.

證明:在AB上截取EAMC,連結(jié)EM,得△AEM

∵∠1=180°-∠AMB-∠AMN,2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BABC,EAMC,∴BAEABCMC,即BEBM

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

∵_(dá)_______________________________

∴△AEM≌△MCN (ASA).∴AMMN

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當(dāng)∠A1M1N1=90°時,結(jié)論A1M1M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDnXn”,請你猜想:當(dāng)∠AnMnNn    °時,結(jié)論AnMnMnNn仍然成立?(直接寫出答案,不需要證明)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:北京同步題 題型:填空題

在解直角三角形的過程中,一般要用的主要關(guān)系如下(如圖所示):在Rt△ABC中,∠C=90°,AC=b,BC=a,AB=c,第1題圖
①三邊之間的等量關(guān)系:(    );
②兩銳角之間的關(guān)系:(    );
③邊與角之間的關(guān)系:
=(    )        (    )
(    )     (    )
④直角三角形中成比例的線段(如圖所示)。
在Rt△ABC中,∠C=90°,CD⊥AB于D.CD2=(    );
AC2=(    );BC2=(    );AC·BC=(    )。
⑤直角三角形的主要線段(如圖所示)。
直角三角形斜邊上的中線等于斜邊的(    ),斜邊的中點是(    )。若r是Rt△ABC(∠C=90°)的內(nèi)切圓半徑,則r=(    )=(    )。
⑥直角三角形的面積公式.在Rt△ABC中,∠C=90°,S△ABC=(    )。(答案不唯一)

         第1題圖                                            第④小題圖                  第⑤小題圖

查看答案和解析>>

同步練習(xí)冊答案