如圖,已知拋物線y=x2+bx+c經(jīng)過矩形ABCD的兩個頂點A、B,AB平行于x軸,對角線BD與拋物線交于點P,點A的坐標(biāo)為(0,2),AB=4.
(1)求拋物線的解析式;
(2)若S△APO=,求矩形ABCD的面積.

【答案】分析:(1)已知了A點坐標(biāo)和AB的長,即可得出B點坐標(biāo),然后將A、B兩點的坐標(biāo)代入拋物線中,即可求出拋物線的解析式.
(2)根據(jù)三角形APO的面積可求出P點的橫坐標(biāo),將其代入拋物線的解析式中即可求得P點的坐標(biāo).過P作PE⊥OA于E,通過構(gòu)建的相似三角形DPE和DBA,可求出AD的長,有了長和寬即可求出矩形的面積.(也可通過求直線BP的解析式得出D點坐標(biāo)來求出AD的長)
解答:解:
(1)由題意得,B點坐標(biāo)為(4,2)
將點A(0,2),B(4,2)代入二次函數(shù)解析式得:

解得:
∴拋物線的解析式為y=x2-4x+2

(2)由S△APO=可得:OA•|xp|=,即×2×|xp|=
∴xp=(負(fù)舍)
將xp=代入拋物線解析式得:yP=-
過P點作垂直于y軸的垂線,垂足為E
∵△DEP∽△DAB

解得:AD=6
∴S矩形ABCD=24.
點評:本題主要考查了矩形的性質(zhì)、二次函數(shù)解析式的確定、圖形面積的求法等知識點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標(biāo),若不存在,請說明理由.
(4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設(shè)運動的時間為t秒.
①當(dāng)t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)點P是拋物線對稱軸上一點,若△PAB∽△OBC,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點是(-1,-4),且與x軸交于A、B(1,0)兩點,交y軸于點C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點,且y1>y2,求實數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點M、交拋物線于點N,求線段MN的長度的最大值;
(4)若以拋物線上的點P為圓心作圓與x軸相切時,正好也與y軸相切,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案