已知點M(﹣,3m)關(guān)于原點對稱的點在第一象限,那么m的取值范圍是 _________ .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線y=x2﹣2x+c與x軸交于A.B兩點,與y軸交于C點,拋物線的頂點為D點,點A的坐標(biāo)為(﹣1,0).
(1)求D點的坐標(biāo);
(2)如圖1,連接AC,BD并延長交于點E,求∠E的度數(shù);
(3)如圖2,已知點P(﹣4,0),點Q在x軸下方的拋物線上,直線PQ交線段AC于點M,當(dāng)∠PMA=∠E時,求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過A、B、C三點,已知點A(﹣3,0),B(0,3),C(1,0).
(1)求此拋物線的解析式.
(2)點P是直線AB上方的拋物線上一動點,(不與點A、B重合),過點P作x軸的垂線,垂足為F,交直線AB于點E,作PD⊥AB于點D.
①動點P在什么位置時,△PDE的周長最大,求出此時P點的坐標(biāo);
②連接PA,以AP為邊作圖示一側(cè)的正方形APMN,隨著點P的運(yùn)動,正方形的大小、位置也隨之改變.當(dāng)頂點M或N恰好落在拋物線對稱軸上時,求出對應(yīng)的P點的坐標(biāo).(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,對于任意兩點P1(x1,y1)與P2(x2,y2)的“非常距離”,給出如下定義:
若|x1﹣x2|≥|y1﹣y2|,則點P1與點P2的“非常距離”為|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,則點P1與點P2的“非常距離”為|y1﹣y2|.
例如:點P1(1,2),點P2(3,5),因為|1﹣3|<|2﹣5|,所以點P1與點P2的“非常距離”為|2﹣5|=3,也就是圖1中線段P1Q與線段P2Q長度的較大值(點Q為垂直于y軸的直線P1Q與垂直于x軸的直線P2Q交點).
(1)已知點A(﹣,0),B為y軸上的一個動點,
①若點A與點B的“非常距離”為2,寫出一個滿足條件的點B的坐標(biāo);
②直接寫出點A與點B的“非常距離”的最小值;
(2)已知C是直線y=x+3上的一個動點,
①如圖2,點D的坐標(biāo)是(0,1),求點C與點D的“非常距離”的最小值及相應(yīng)的點C的坐標(biāo);
②如圖3,E是以原點O為圓心,1為半徑的圓上的一個動點,求點C與點E的“非常距離”的最小值及相應(yīng)的點E與點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,已知點A(﹣,0),B(,0),點C在坐標(biāo)軸上,且AC+BC=6,寫出滿足條件的所有點C的坐標(biāo)。0,2),(0,﹣2),(﹣3,0),(3,0) .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com