【題目】完成下面的推理.

如圖,BE平分ABD,DE平分BDC,且α+β=90°,試說明:ABCD.

完成推理過程:

BE平分∠ABD(已知),

∴∠ABD2α(__________)

DE平分∠BDC(已知),

∴∠BDC2β (__________)

∴∠ABD+∠BDC2α2β2(α+∠β)( __________)

∵∠α+∠β90°(已知),

∴∠ABD+∠BDC180°(__________)

ABCD(____________________)

【答案】見解析.

【解析】

理解題意,分析每一步的推導(dǎo)根據(jù).由角的平分線定義得∠ABD=2α,BDC=2β,

根據(jù)等量代換得∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β),由已知∠α+∠β=90°,再由等量代換得∠ABD+∠BDC=180°,最后根據(jù)“同旁內(nèi)角互補(bǔ)兩直線平行”得AB∥CD.

BE平分∠ABD(已知),

∴∠ABD=2α(角平分線的定義).

DE平分∠BDC(已知),

∴∠BDC=2β (角平分線的定義)

∴∠ABD+BDC=2α+2β=2(α+β)(等量代換)

∵∠α+β=90°(已知),

∴∠ABD+BDC=180°(等量代換).

ABCD(同旁內(nèi)角互補(bǔ)兩直線平行).

故答案為:角平分線的定義,角平分線的定義,等量代換,等量代換,同旁內(nèi)角互補(bǔ)兩直線平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)組織學(xué)生參加交通安全知識網(wǎng)絡(luò)測試活動.小王對九年(3)班全體學(xué)生的測試成績進(jìn)行了統(tǒng)計(jì),并將成績分為四個等級:優(yōu)秀、良好、一般、不合格,繪制成如下的統(tǒng)計(jì)圖(不完整),
請你根據(jù)圖中所給的信息解答下列問題:
(1)九年(3)班有名學(xué)生,并把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(2)已知該市共有12000名中學(xué)生參加了這次交通安全知識測試,請你根據(jù)該班成績估計(jì)該市在這次測試中成績?yōu)閮?yōu)秀的人數(shù);
(3)小王查了該市教育網(wǎng)站發(fā)現(xiàn),全市參加本次測試的學(xué)生中,成績?yōu)閮?yōu)秀的有5400人,請你用所學(xué)統(tǒng)計(jì)知識簡要說明實(shí)際優(yōu)秀人數(shù)與估計(jì)人數(shù)出現(xiàn)較大偏差的原因;
(4)該班從成績前3名(2男1女)的學(xué)生中隨機(jī)抽取2名參加復(fù)賽,請用樹狀圖或列表法求出抽到“一男一女”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知等腰三角形ABC的底邊BC=20cm,D是腰AB上一點(diǎn),且CD=16cm,BD=12cm,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=4,AD=6,M是AD邊的中點(diǎn),P是射線AB上的一個動點(diǎn)(不與A,B重合),MN⊥PM交射線BC于N點(diǎn).

(1)如圖1,當(dāng)點(diǎn)N與點(diǎn)C重合時,求AP的長;

(2)如圖2,在點(diǎn)N的運(yùn)動過程中,求證: 為定值;

(3)在射線AB上,是否存在點(diǎn)P,使得△DCN∽△PMN?若存在,求此時AP的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D、E分別在AC、AB邊上,且BC=BD,AD=DE=EB,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過對角線BD上一點(diǎn)PEFAB,GHAD,與各邊交點(diǎn)分別為點(diǎn)EF,GH,則圖中面積相等的平行四邊形的對數(shù)為(   )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一個四邊形的邊角料,東東通過測量,獲得了如下數(shù)據(jù):AB=3cm,BC=12cm,CD=13cmAD=4cm,東東由此認(rèn)為這個四邊形中∠A恰好是直角,你認(rèn)為東東的判斷正確嗎?如果你認(rèn)為他正確,請說明其中的理由;如果你認(rèn)為他不正確,那你認(rèn)為需要什么條件,才可以判斷∠A是直角?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點(diǎn)D在邊BC 上,以AD為折痕△ABD折疊得到△AB′D,AB′與邊BC交于點(diǎn)E.若△DEB′為直角三角形,則BD的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A為函數(shù)y= (x>0)圖象上一點(diǎn),連結(jié)OA,交函數(shù)y= (x>0)的圖象于點(diǎn)B,點(diǎn)C是x軸上一點(diǎn),且AO=AC,則△ABC的面積為

查看答案和解析>>

同步練習(xí)冊答案