【題目】如圖,四邊形ABCD為菱形,頂點(diǎn)A、B在x軸上,AB=5,點(diǎn)C在第一象限,且菱形ABCD的面積為20, A坐標(biāo)為(-2,0),則頂點(diǎn)C的坐標(biāo)為________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,0),B(0,﹣2),C(2,﹣1);
(1)畫出關(guān)于x軸對稱的△AB1C1;
(2)以原點(diǎn)O為位似中心,畫出△A2B2C2,使△A2B2C2與△ABC的位似比為2:1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,反比例函數(shù)y=(x>0,k>0圖象上的兩點(diǎn)(n,3n)、(n+1,2n).
(1)求n的值;
(2)如圖,直線l為正比例函數(shù)y=x的圖象,點(diǎn)A在反比例函數(shù)y=(x>0,k>0)的圖象上,過點(diǎn)A作AB⊥l于點(diǎn)B,過點(diǎn)B作BC⊥x軸于點(diǎn)C,過點(diǎn)A作AD⊥BC于點(diǎn)D,記△BOC的面積為S1,△ABD的面積為S2,求S1﹣S2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩車從路段AB兩端同時(shí)出發(fā),沿平行路線行駛(即AC∥BD),CE和DF的長分別表示兩車到道路AB的距離.
(1)如果兩車行駛速度不相同,證明:△ACE∽△BDF;
(2)添加一個(gè)條件,使△ACE≌△BDF,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接2011年高中招生考試,某中學(xué)對全校九年級學(xué)生進(jìn)行了一次數(shù)學(xué)摸底考試,并隨機(jī)抽取了部分學(xué)生的測試成績作為樣本進(jìn)行,繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中所給信息,下列問題:
(1)請將表示成績類別為“中”的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在扇形統(tǒng)計(jì)圖中,表示成績類別為“優(yōu)”的扇形所對應(yīng)的圓心角是 72 度;
(3)學(xué)校九年級共有1000人參加了這次數(shù)學(xué)考試,估算該校九年級共有多少名學(xué)生的數(shù)學(xué)成績可以達(dá)到優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)O為△ABC外接圓的圓心,將△ABC沿AB翻折后得到△ABD.
(1)求證:點(diǎn)D在⊙O上;
(2)在直徑AB的延長線上取一點(diǎn)E,使DE2=BEAE.
①求證:直線DE為⊙O的切線;
②過點(diǎn)O作OF∥BD交AD于點(diǎn)H,交ED的延長線于點(diǎn)F.若⊙O的半徑為5,cos∠DBA=,求FH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于、兩點(diǎn),以為邊在第一象限作正方形沿軸負(fù)方向平移個(gè)單位長度后,點(diǎn)恰好落在雙曲線上,則的值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A、B在x軸的正半軸上,反比例函數(shù)y=(k≠0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)D,交BC于點(diǎn)E.若AB=4,CE=2BE,tan∠AOD=,則k的值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點(diǎn)D(保留作圖痕跡,不要求寫作法);
(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com