【題目】已知△ABC中,∠A=80°,∠B、∠C的平分線的夾角是(

A. 130° B. 60° C. 130°或50° D. 60°或120°

【答案】C

【解析】

作出圖形,設(shè)兩角平分線相交于點(diǎn)O,根據(jù)三角形的內(nèi)角和定理求出∠ABC+∠ACB的度數(shù),再根據(jù)角平分線的定義求出∠OBC+∠OCB的度數(shù)然后在△BOC中利用三角形的內(nèi)角和定理求解即可得到∠BOC的度數(shù),再分夾角為鈍角與銳角兩種情況解答

如圖,∵∠A=80°,∴∠ABC+∠ACB=180°﹣A=180°﹣80°=100°.

BD、CE分別為∠ABCACB的平分線,∴∠OBC=ABC,OCB=ACB,∴∠OBC+∠OCB=ABC+∠ACB)=×100°=50°.

BOC,BOC=180°﹣(OBC+∠OCB)=180°﹣50°=130°.

又∵180°﹣130°=50°,∴角平分線的夾角是130°50°.

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,∠ABC=60°,BC=2cm,BD平分∠ABCAC于點(diǎn)D,點(diǎn)M,N分別是BDBC邊上的動點(diǎn),則MN+MC的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若BC=ECBCE=ACD,則添加不能使ABC≌△DBC的條件是(

AAB=DE BB=E CAC=DC DA=D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,射線CBOA,C=OAB=100°,E、FCB上,且滿足∠FOB=AOB,OE平分∠COF。

(1)求∠EOB的度數(shù);

(2)若平行移動AB,那么∠OBC∶∠OFC的值是否隨之變化?若變化,找出變化規(guī)律;若不變,求出這個比值;

(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=OBA?若存在,求出其度數(shù);若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ABC=90°,AB=CB,點(diǎn)E在邊BC上,點(diǎn)F在邊AB的延長線上,BE=BF.

(1)求證:ABE≌△CBF;

(2)若∠CAE=30°,求∠ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,AC上的中線BD把三角形的周長分為15㎝和30㎝的兩個部分,求:三角形的三邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將在Rt△ABC繞其銳角頂點(diǎn)A旋轉(zhuǎn)90°得到在Rt△ADE,連接BE,延長DE、BC相交于點(diǎn)F,則有∠BFE=90°,且四邊形ACFD是一個正方形.

(1)判斷△ABE的形狀,并證明你的結(jié)論;

(2)用含b代數(shù)式表示四邊形ABFE的面積;

(3)求證:a2+b2=c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某縣政府為了迎接八一建軍節(jié),加強(qiáng)軍民共建活動,計劃從花園里拿出1430盆甲種花卉和1220盆乙種花卉,搭配成A、B兩種園藝造型共20個,在城區(qū)內(nèi)擺放,以增加節(jié)日氣氛,已知搭配A、B兩種園藝造型各需甲、乙兩種花卉數(shù)如表所示:(單位:盆)

(1)某校某年級一班課外活動小組承接了這個園藝造型搭配方案的設(shè)計,問符合題意的搭配方案有幾種?請你幫忙設(shè)計出來.

(2)如果搭配及擺放一個A造型需要的人力是8人次,搭配及擺放一個B造型需要的人力是11人次,哪種方案使用人力的總?cè)舜螖?shù)最少,請說明理由.

造型數(shù)量花

A

B

甲種

80

50

乙種

40

90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(1,0),B(3,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)P在該拋物線上滑動,則滿足SPAB=1的點(diǎn)P有幾個?求出所有點(diǎn)P的坐標(biāo);
(3)在該拋物線的對稱軸上存在點(diǎn)M,使得△MAC的周長最小,求出這個點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案