已知點(diǎn)A、B分別是x軸、y軸上的動(dòng)點(diǎn),點(diǎn)C、D是某個(gè)函數(shù)圖象上的點(diǎn),當(dāng)四邊形ABCD(A、B、C、D各點(diǎn)依次排列)為正方形時(shí),我們稱這個(gè)正方形為此函數(shù)圖象的“伴侶正方形”.
例如:在圖1中,正方形ABCD是一次函數(shù)y=x+1圖象的其中一個(gè)“伴侶正方形”.
(1)如圖1,若某函數(shù)是一次函數(shù)y=x+1,求它的圖象的所有“伴侶正方形”的邊長(zhǎng);
(2)如圖2,若某函數(shù)是反比例函數(shù)y=
k
x
(k>0),它的圖象的“伴侶正方形”為ABCD,點(diǎn)D(2,m)(m<2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)的解析式;
(3)如圖3,若某函數(shù)是二次函數(shù)y=ax2+c(a≠0),它的圖象的“伴侶正方形”為ABCD,C、D中的一個(gè)點(diǎn)坐標(biāo)為(3,4),請(qǐng)你直接寫出該二次函數(shù)的解析式.
考點(diǎn):反比例函數(shù)綜合題
專題:
分析:(1)先正確地畫出圖形,再利用正方形的性質(zhì)確定相關(guān)點(diǎn)的坐標(biāo)從而計(jì)算正方形的邊長(zhǎng),注意思維的嚴(yán)密性.
(2)因?yàn)锳BCD為正方形,所以可作垂線得到等腰直角三角形,利用點(diǎn)D(2,m)的坐標(biāo)表示出點(diǎn)C的坐標(biāo)從而求解.
(3)注意思維的嚴(yán)密性,拋物線開口既可能向上,也可能向下.當(dāng)拋物線開口向上時(shí),正方形的另一個(gè)頂點(diǎn)也是在拋物線上,這個(gè)點(diǎn)既可能在點(diǎn)(3,4)的左邊,也可能在點(diǎn)(3,4)的右邊,過點(diǎn)(3,4)向x軸作垂線,利用全等三角形確定線段的長(zhǎng)即可確定拋物線上另一個(gè)點(diǎn)的坐標(biāo);當(dāng)拋物線開口向下時(shí)也是一樣地分為兩種情況來討論.
解答:解:(1)(I)當(dāng)點(diǎn)A在x軸正半軸、點(diǎn)B在y軸負(fù)半軸上時(shí):
正方形ABCD的邊長(zhǎng)為
2

(II)當(dāng)點(diǎn)A在x軸負(fù)半軸、點(diǎn)B在y軸正半軸上時(shí):
設(shè)正方形邊長(zhǎng)為a,易得3a=
2
,
解得a=
2
3
,此時(shí)正方形的邊長(zhǎng)為
2
3

∴所求“伴侶正方形”的邊長(zhǎng)為
2
2
3
;

(2)如圖,作DE⊥x軸,CF⊥y軸,垂足分別為點(diǎn)E、F,
易證△ADE≌△BAO≌△CBF.
∵點(diǎn)D的坐標(biāo)為(2,m),m<2,
∴DE=OA=BF=m,
∴OB=AE=CF=2-m.
∴OF=BF+OB=2,
∴點(diǎn)C的坐標(biāo)為(2-m,2).
∴2m=2(2-m),解得m=1.
∴反比例函數(shù)的解析式為y=
2
x
;

(3)實(shí)際情況是拋物線開口向上的兩種情況中,另一個(gè)點(diǎn)都在(3,4)的左側(cè),而開口向下時(shí),另一點(diǎn)都在(3,4)的右側(cè),與上述解析明顯不符合
a、當(dāng)點(diǎn)A在x軸正半軸上,點(diǎn)B在y軸正半軸上,點(diǎn)C坐標(biāo)為(3,4)時(shí):另外一個(gè)頂點(diǎn)為(4,1),對(duì)應(yīng)的函數(shù)解析式是y=-
3
7
x2+
55
7
;
b、當(dāng)點(diǎn)A在x 軸正半軸上,點(diǎn) B在 y軸正半軸上,點(diǎn)D 坐標(biāo)為(3,4)時(shí):不存在,
c、當(dāng)點(diǎn)A 在 x 軸正半軸上,點(diǎn) B在 y軸負(fù)半軸上,點(diǎn)C 坐標(biāo)為(3,4)時(shí):不存在
d、當(dāng)點(diǎn)A在x 軸正半軸上,點(diǎn)B在y軸負(fù)半軸上,點(diǎn)D坐標(biāo)為(3,4)時(shí):另外一個(gè)頂點(diǎn)C為(-1,3),對(duì)應(yīng)的函數(shù)的解析式是y=
1
8
x2+
23
8
;
e、當(dāng)點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在y軸負(fù)半軸上,點(diǎn)C坐標(biāo)為(3,4)時(shí),另一個(gè)頂點(diǎn)D的坐標(biāo)是(7,-3)時(shí),對(duì)應(yīng)的函數(shù)解析式是y=-
7
40
x2+
223
40
;
f、當(dāng)點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在y軸負(fù)半軸上,點(diǎn)C坐標(biāo)為(3,4)時(shí),另一個(gè)頂點(diǎn)D的坐標(biāo)是(-4,7)時(shí),對(duì)應(yīng)的拋物線為y=
3
7
x2+
1
7

故二次函數(shù)的解析式分別為:y=
1
8
x2+
23
8
或y=-
7
40
x2+
223
40
或y=
3
7
x2+
1
7
或y=
3
7
x2+
1
7
點(diǎn)評(píng):本題考查的是反比例函數(shù)綜合題,比較復(fù)雜,先要正確理解伴侶正方形的意義,特別要注意的是正方形的頂點(diǎn)所處的位置,因?yàn)樯婕暗较嚓P(guān)點(diǎn)的坐標(biāo),所以過某一點(diǎn)作坐標(biāo)軸的垂線是必不可少的,再利用正方形的性質(zhì)和全等三角形的知識(shí)確定相關(guān)點(diǎn)的坐標(biāo)即可求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,且D為BC上一點(diǎn),CD=AD,AB=BD,則∠B的度數(shù)為( 。
A、30°B、36°
C、40°D、45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是AB上一點(diǎn),以AD為直徑作⊙O交AC于E,與BC相切于點(diǎn)F,連接AF.
(1)求證:∠BAF=∠CAF;
(2)若AC=6,BC=8,求BD和CE的長(zhǎng);
(3)若AF與DE交于H,求
FH
FA
的值(直接寫出結(jié)果即可)
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在直角坐標(biāo)平面xOy中,O為原點(diǎn),點(diǎn)A、C分別在x軸、y軸的正半軸上,四邊形OABC是邊長(zhǎng)為4的正方形,點(diǎn)E為BC的中點(diǎn),且二次函數(shù)y=-x2+bx+c經(jīng)過B、E兩點(diǎn).將正方形OABC翻折,使頂點(diǎn)C落在二次函數(shù)圖象的對(duì)稱軸MN上的點(diǎn)G處,折痕EF交y軸于點(diǎn)F.
(1)求二次函數(shù)y=-x2+bx+c的解析式;
(2)求點(diǎn)G的坐標(biāo);
(3)設(shè)點(diǎn)P為直線EF上的點(diǎn),是否存在這樣的點(diǎn)P,使得以P、F、G為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商店準(zhǔn)備進(jìn)一批季節(jié)性小家電,單價(jià)40元.經(jīng)市場(chǎng)預(yù)測(cè),銷售定價(jià)為52元時(shí),可售出180個(gè),定價(jià)每增加1元,銷售量?jī)魷p少10個(gè);定價(jià)每減少1元,銷售量?jī)粼黾?0個(gè).因受庫存的影響,每批次進(jìn)貨個(gè)數(shù)不得超過180個(gè),商店若將準(zhǔn)備獲利2000元,則應(yīng)進(jìn)貨多少個(gè)?定價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

第十五屆中國(guó)“西博會(huì)”將于2014年10月底在成都召開,現(xiàn)有20名志愿者準(zhǔn)備參加某分會(huì)場(chǎng)的工作,其中男生8人,女生12人.
(1)若從這20人中隨機(jī)選取一人作為聯(lián)絡(luò)員,求選到女生的概率;
(2)若該分會(huì)場(chǎng)的某項(xiàng)工作只在甲、乙兩人中選一人,他們準(zhǔn)備以游戲的方式?jīng)Q定由誰參加,游戲規(guī)則如下:將四張牌面數(shù)字分別為2,3,4,5的撲克牌洗勻后,數(shù)字朝下放于桌面,從中任取2張,若牌面數(shù)字之和為偶數(shù),則甲參加,否則乙參加.試問這個(gè)游戲公平嗎?請(qǐng)用樹狀圖或列表法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在2×3的正方形網(wǎng)格格點(diǎn)上有兩點(diǎn)A、B,在其它格點(diǎn)上隨機(jī)取一點(diǎn)記為C,能使以A、B、C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形的概率為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x、y滿足方程組
1
3
x-y=4
1
3
x+y=2
,則x+y=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形AOBC的頂點(diǎn)坐標(biāo)分別為A(0,3),O(0,0),B(4,0),C(4,3),動(dòng)點(diǎn)F在邊BC上(不與B、C重合),過點(diǎn)F的反比例函數(shù)y=
k
x
的圖象與邊AC交于點(diǎn)E,直線EF分別與y軸和x軸相交于點(diǎn)D和G.給出下列命題:
①若k=4,則△OEF的面積為
8
3
;
②若k=
21
8
,則點(diǎn)C關(guān)于直線EF的對(duì)稱點(diǎn)在x軸上;
③滿足題設(shè)的k的取值范圍是0<k≤12;
④若DE•EG=
25
12
,則k=1.
其中正確的命題的序號(hào)是
 
(寫出所有正確命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案