11.如圖,四邊形ABCD中,AD∥BC,CA是∠BCD的平分線,且AB⊥AC,AB=6,AD=4,則該四邊形的面積為( 。
A.9$\sqrt{7}$B.12C.8D.8$\sqrt{3}$

分析 根據(jù)角平分線的定義可得∠1=∠2,根據(jù)兩直線平行,內(nèi)錯角相等可得∠2=∠3,然后得到∠1=∠3,再根據(jù)等角對等邊可得CD=AD=4,過點(diǎn)D作DE⊥AC于E,根據(jù)等腰三角形三線合一的性質(zhì)可得AE=$\frac{1}{2}$AC,根據(jù)兩組角對應(yīng)相等的兩個三角形相似求出△ABC∽△EDC,再根據(jù)相似三角形對應(yīng)邊成比例求出BC,然后利用勾股定理求出AC,從而得出DE的長,最后根據(jù)四邊形的面積=S△ABC+S△ADC,即可得出答案.

解答 解:∵CA是∠BCD的平分線,
∴∠1=∠2,
∵AD∥BC,
∴∠2=∠3,
∴∠1=∠3,
∵AD=4,
∴CD=AD=4,
過點(diǎn)D作DE⊥AC于E,則AE=CE=$\frac{1}{2}$AC,
∵∠1=∠2,∠BAC=∠DEC,
∴△ABC∽△EDC,
∴$\frac{CD}{BC}$=$\frac{CE}{AC}$,
即 $\frac{4}{BC}$=$\frac{1}{2}$,
∴BC=8,
在Rt△ABC中,AC=$\sqrt{B{C}^{2}-A{B}^{2}}$=$\sqrt{{8}^{2}-{6}^{2}}$=2$\sqrt{7}$,
∴DE=$\sqrt{A{D}^{2}-A{E}^{2}}$=$\sqrt{{4}^{2}-{\sqrt{7}}^{2}}$=3,
∴四邊形的面積為:$\frac{1}{2}$AB•AC+$\frac{1}{2}$AC•DE=$\frac{1}{2}$×6×2$\sqrt{7}$+$\frac{1}{2}$×2$\sqrt{7}$×3=9$\sqrt{7}$.
故選A.

點(diǎn)評 本題考查了相似三角形的判定與性質(zhì),平行線的性質(zhì),等腰三角形三線合一的性質(zhì),勾股定理、三角形的面積公式等知識點(diǎn),作輔助線構(gòu)造出相似三角形并求出BC的長是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,延長?ABCD的邊AB到點(diǎn)E,使BE=BC,延長CD到點(diǎn)F,使DF=DA,連結(jié)AF,CE,求證:四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.如圖,在已知的△ABC中,按以下步驟作圖:
若CD=AC,∠A=50°,則∠ACB的度數(shù)為105°.
①分別以B,C為圓心,以大于$\frac{1}{2}$BC的長為半徑作弧,兩弧相交于兩點(diǎn)M,N;
②作直線MN交AB于點(diǎn)D,連接CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.今年“五.一”節(jié)期間,某商場舉行抽獎促銷活動,抽獎辦法是:在一個不透明的袋子中裝有四個標(biāo)號分別為1,2,3,4的小球,它們的形狀、大小、質(zhì)地等完全相同,抽獎?wù)叩谝淮蚊鲆粋小球,不放回,第二次再摸出一個小球,若兩次摸出的小球中有一個小球標(biāo)號為“1”,則獲獎.
(1)請你用樹形圖或列表法表示出抽獎所有可能出現(xiàn)的結(jié)果;
(2)求抽獎人員獲獎的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,已知△ABC,按如下步驟作圖:
(1)以A圓心,AB長為半徑畫。
(2)以C為圓心,CB長為半徑畫弧,兩弧相交于點(diǎn)D;
(3)連接BD,與AC交于點(diǎn)E,連接AD,CD.
①四邊形ABCD是中心對稱圖形;
②△ABC≌△ADC;
③AC⊥BD且BE=DE;
④BD平分∠ABC.
其中正確的是(  )
A.①②B.②③C.①③D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.目前“校園手機(jī)”現(xiàn)象越來越受到社會關(guān)注,針對這種現(xiàn)象,某校九年級數(shù)學(xué)興趣小組的同學(xué)隨機(jī)調(diào)查了若干名家長對“中學(xué)生帶手機(jī)的”的態(tài)度(態(tài)度分為:A.無所謂;B.基本贊成;C.贊成;D.反對).并將調(diào)查結(jié)果繪制成頻數(shù)折線統(tǒng)計圖1和扇形統(tǒng)計圖2(不完整).請根據(jù)圖中提供的信息,解答下列問題:

(1)此次抽樣調(diào)查中,共調(diào)查了多少名名中學(xué)生家長;
(2)求出圖2中扇形C所對的圓心角的度數(shù),并將圖1補(bǔ)充完整;
(3)在此次調(diào)查活動中,初三(1)班有A1、A2兩位家長對中學(xué)生帶手機(jī)持反對態(tài)度,初三(2)班有B1、B2兩位學(xué)生家長對中學(xué)生帶手機(jī)也持反對態(tài)度,現(xiàn)從這4位家長中選2位家長參加學(xué)校組織的家;顒,用列表法或畫樹狀圖的方法求出選出的2人來自不同班級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.解方程組:$\left\{\begin{array}{l}{x-2y=3}\\{{x}^{2}+xy-2{y}^{2}=0}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.如圖,在平行四邊形ABCD中,AC、BD相交于O,請?zhí)砑右粋條件AC=BD或∠ABC=90°,可
得平行四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,∠A=∠B-∠C,則此三角形為( 。┤切危
A.直角B.鈍角
C.銳角D.以上三種情況都有可能

查看答案和解析>>

同步練習(xí)冊答案