【題目】如圖,△ABC的兩條高線BD,CE相交于點(diǎn)F,已知∠ABC=60°,AB=10,CF=EF,則△ABC的面積為( )
A.20
B.25
C.30
D.40
【答案】A
【解析】解:連接AF延長(zhǎng)AF交BC于G.設(shè)EF=CF=x, ∵BD、CE是高,
∴AG⊥BC,
∵∠ABC=60°,∠AGB=90°,
∴∠BAG=30°,
在Rt△AEF中,∵EF=x,∠EAF=30°,∴AE= x,
在Rt△BCE中,∵EC=2x,∠CBE=60°,∴BE= x.
∴ x+ x=10,
∴x=2 ,
∴CE=4 ,
∴S△ABC= ABCE= ×10×4 =20 .
故選A.
連接AF延長(zhǎng)AF交BC于G.設(shè)EF=CF=x,連接AF延長(zhǎng)AF交BC于G.設(shè)EF=CF=x,因?yàn)锽D、CE是高,所以AG⊥BC,由∠ABC=60°,∠AGB=90°,推出∠BAG=30°,在Rt△AEF中,由EF=x,∠EAF=30°可得AE= x,在Rt△BCE中,由EC=2x,∠CBE=60°可得BE= x.可得 x+ x=10,解方程即可解決問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上A 點(diǎn)對(duì)應(yīng)的數(shù)為﹣5,B 點(diǎn)在A 點(diǎn)右邊,電子螞蟻甲、乙在B分別以2個(gè)單位/秒、1個(gè)單位/秒的速度向左運(yùn)動(dòng),電子螞蟻丙在A 以3個(gè)單位/秒的速度向右運(yùn)動(dòng).
(1)若電子螞蟻丙經(jīng)過(guò)5秒運(yùn)動(dòng)到C 點(diǎn),求C 點(diǎn)表示的數(shù);
(2)若它們同時(shí)出發(fā),若丙在遇到甲后1秒遇到乙,求B 點(diǎn)表示的數(shù);
(3)在(2)的條件下,設(shè)它們同時(shí)出發(fā)的時(shí)間為t 秒,是否存在t的值,使丙到乙的距離是丙到甲的距離的2倍?若存在,求出t 值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F.請(qǐng)你認(rèn)真閱讀下面關(guān)于這個(gè)圖的探究片段,完成所提出的問(wèn)題.
(1)探究1:小強(qiáng)看到圖(*)后,很快發(fā)現(xiàn)AE=EF,這需要證明AE和EF所在的兩個(gè)三角形全等,但△ABE和△ECF顯然不全等(一個(gè)是直角三角形,一個(gè)是鈍角三角形),考慮到點(diǎn)E是邊BC的中點(diǎn),因此可以選取AB的中點(diǎn)M,連接EM后嘗試著去證△AEM≌EFC就行了,隨即小強(qiáng)寫出了如下的證明過(guò)程:
證明:如圖1,取AB的中點(diǎn)M,連接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵點(diǎn)E,M分別為正方形的邊BC和AB的中點(diǎn)
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分線
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小強(qiáng)繼續(xù)探索,如圖2,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上的任意一點(diǎn)”,其余條件不變,發(fā)現(xiàn)AE=EF仍然成立,請(qǐng)你證明這一結(jié)論.
(3)探究3:小強(qiáng)進(jìn)一步還想試試,如圖3,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC延長(zhǎng)線上的一點(diǎn)”,其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請(qǐng)你完成證明過(guò)程給小強(qiáng)看,若不成立請(qǐng)你說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線分別與軸、軸交于C、D兩點(diǎn),與反比例函數(shù)的圖像相交于點(diǎn)和點(diǎn),過(guò)點(diǎn)A作AM⊥y軸于點(diǎn)M,過(guò)點(diǎn)B作BN⊥x軸于點(diǎn)N,連結(jié)MN、OA、OB.下列結(jié)論:
①;②;③四邊形與四邊形MNCA的周長(zhǎng)相等;④.其中正確的個(gè)數(shù)是( )個(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC中,∠ACB=90°,AC=BC= ,D、E是AB邊上的兩個(gè)動(dòng)點(diǎn),滿足∠DCE=45°.
(1)如圖②,把△ADC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△BKC,連結(jié)EK.
①求證:△DCE≌△KCE.
②求證:DE2=AD2+BE2 .
③思考與探究:當(dāng)點(diǎn)D從點(diǎn)A向AB的中點(diǎn)運(yùn)動(dòng)的過(guò)程中,請(qǐng)嘗試寫出DE長(zhǎng)度的變化趨勢(shì) ;并直接寫出DE長(zhǎng)度的最大值或最小值 (標(biāo)明最大值或最小值).
(2)如圖③,若△CDE的外接圓⊙O分別交AC,BC于點(diǎn)F、G,求證:CF:CG=BE:AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,點(diǎn)A、O、B依次在直線MN上,現(xiàn)將射線OA繞點(diǎn)O沿順時(shí)針?lè)较蛞悦棵?°的速度旋轉(zhuǎn),同時(shí)射線OB繞點(diǎn)O沿逆時(shí)針?lè)较蛞悦棵?°的速度旋轉(zhuǎn),如圖2,設(shè)旋轉(zhuǎn)時(shí)間為t(0秒≤t≤90秒).
(1)用含t的代數(shù)式表示∠MOA的度數(shù).
(2)在運(yùn)動(dòng)過(guò)程中,當(dāng)∠AOB第二次達(dá)到60°時(shí),求t的值.
(3)在旋轉(zhuǎn)過(guò)程中是否存在這樣的t,使得射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角(指大于0°而不超過(guò)180°的角)的平分線?如果存在,請(qǐng)直接寫出t的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點(diǎn)D,點(diǎn)P是BA延長(zhǎng)線上一點(diǎn),點(diǎn)O是線段AD上一點(diǎn),OP=OC.
(1)求∠APO+∠DCO的度數(shù);
(2)求證:點(diǎn)P在OC的垂直平分線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l與x軸,y軸分別交于M,N兩點(diǎn),且OM=ON=3.
(1)求這條直線的函數(shù)表達(dá)式;
(2)Rt△ABC與直線l在同一個(gè)平面直角坐標(biāo)系內(nèi),其中∠ABC=90°,AC=2 ,A(1,0),B(3,0),將△ABC沿著x軸向左平移,當(dāng)點(diǎn)C落在直線l上時(shí),求線段AC掃過(guò)的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com