【題目】如圖,在矩形ABCD中,EAD邊的中點(diǎn),BEAC,垂足為F,連接DF,則下列四個(gè)結(jié)論中,錯(cuò)誤的是(

A. AEFCABB. CF=2AFC. DF=DCD. tanCAD=

【答案】D

【解析】

根據(jù)四邊形ABCD是矩形,BEAC,可得∠ABC=AFB=90°,又∠BAF=CAB,于是AEF∽△CAB,故A正確;根據(jù)點(diǎn)EAD邊的中點(diǎn),以及ADBC,得出AEF∽△CBF,根據(jù)相似三角形對(duì)應(yīng)邊成比例,可得CF=2AF,故B正確;過DDMBEACN,得到四邊形BMDE是平行四邊形,求出BM=DE=BC,得到CN=NF,根據(jù)線段的垂直平分線的性質(zhì)可得結(jié)論,故C正確;設(shè)AE=a,AB=CD=b,則AD=2a,通過證明BAE∽△ADC,可得=,進(jìn)而可得b=a,根據(jù)正切的定義可得tanCAD===,即可證明D錯(cuò)誤.

如圖,過DDMBEACN,

∵四邊形ABCD是矩形,

ADBC,∠ABC=90°,AD=BC,

BEAC于點(diǎn)F,

∴∠EAC=ACB,∠ABC=AFE=90°

∴△AEF∽△CAB,故A正確;

ADBC,

∴△AEF∽△CBF,

=

AE=AD=BC,

=,

CF=2AF,故B正確;

DEBM,BEDM

∴四邊形BMDE是平行四邊形,

BM=DE=BC,

BM=CM,

CN=NF,

BEAC于點(diǎn)FDMBE,

DNCF,

DM垂直平分CF

DF=DC,故C正確;

設(shè)AE=a,AB=CD=b,則AD=2a,

∵∠ABE+AEB=90°,∠FAE+AEB=90°,

∴∠BAE=FAE,

∵∠AFE=ADC=90°

BAE∽△ADC,

,即=,

b=a,

tanCAD===,故D錯(cuò)誤;

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,BC=2,CD=1,以AD為直徑的半圓OBC相切于點(diǎn)E,連接BD,則陰影部分的面積為__________.(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(﹣4,8)和點(diǎn)B2n)在拋物線yax2上.

(Ⅰ)求該拋物線的解析式和頂點(diǎn)坐標(biāo),并求出n的值;

(Ⅱ)求點(diǎn)B關(guān)于x軸對(duì)稱點(diǎn)P的坐標(biāo),并在x軸上找一點(diǎn)Q,使得AQ+QB最短,求此時(shí)點(diǎn)Q的坐標(biāo);

(Ⅲ)平移拋物線yax2,記平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為A',點(diǎn)B的對(duì)應(yīng)點(diǎn)為B',點(diǎn)C(﹣2,0)是x軸上的定點(diǎn).

①當(dāng)拋物線向左平移到某個(gè)位置時(shí),A'C+CB'最短,求此時(shí)拋物線的解析式;

D(﹣4,0)是x軸上的定點(diǎn),當(dāng)拋物線向左平移到某個(gè)位置時(shí),四邊形A'B'CD的周長最短,求此時(shí)拋物線的解析式(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABCD為正方形,將正方形的邊CB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到CE,記BCE,連接BE,DE,過點(diǎn)CCFDEF,交直線BEH

(1)當(dāng)α=60°時(shí),如圖1,則BHC= ;

(2)當(dāng)45°<α<90°,如圖2,線段BH、EHCH之間存在一種特定的數(shù)量關(guān)系,請(qǐng)你通過探究,寫出這個(gè)關(guān)系式: (不需證明);

(3)當(dāng)90°<α<180°,其它條件不變(如圖3),(2)中的關(guān)系式是否還成立?若成立,說明理由;若不成立,寫出你認(rèn)為成立的結(jié)論,并簡(jiǎn)要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一矩形OABC放在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)Ay軸正半軸上,點(diǎn)E是邊AB上的一個(gè)動(dòng)點(diǎn)不與點(diǎn)A、B重合,過點(diǎn)E的反比例函數(shù)的圖象與邊BC交于點(diǎn)F

的面積為,且,求k的值;

,,反比例函數(shù)的圖象與邊AB、邊BC交于點(diǎn)EF,當(dāng)沿EF折疊,點(diǎn)B恰好落在OC上,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形ABCD中,∠ACB30°,將△ACDC點(diǎn)順時(shí)針旋轉(zhuǎn)α0°<α360°)至△A'CD'位置.

1)如圖2,若AB2α30°,求SBCD

2)如圖3,取AA′中點(diǎn)O,連OB、OD′、BD′.若△OBD′存在,試判定△OBD′的形狀.

3)當(dāng)αα1時(shí),OBOD′,則α1   °;當(dāng)αα2時(shí),△OBD′不存在,則α2   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB為⊙O直徑,BC為⊙O切線,切點(diǎn)為B,CO平行于弦AD,作直線DC

(1)求證:DC為⊙O切線;

(2) AD·OC=8,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣x+2分別與x軸,y軸交于A,B兩點(diǎn),與雙曲線y交于E,F兩點(diǎn),若AB2EF,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,∠ACB90°.

求作:射線CG,使得CGAB

下面是小東設(shè)計(jì)的尺規(guī)作圖過程.

作法:

①以點(diǎn)A為圓心,適當(dāng)長為半徑作弧,分別交AC,ABDE兩點(diǎn);

②以點(diǎn)C為圓心,AD長為半徑作弧,交AC的延長線于點(diǎn)F

③以點(diǎn)F為圓心,DE長為半徑作弧,兩弧在∠FCB內(nèi)部交于點(diǎn)G;

④作射線CG.所以射線CG就是所求作的射線.

根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:連接FG、DE.

ADE _________,

∴∠DAE = _________

CGAB___________________)(填推理的依據(jù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案