【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為F,連接DF,則下列四個(gè)結(jié)論中,錯(cuò)誤的是( )
A. △AEF~△CABB. CF=2AFC. DF=DCD. tan∠CAD=
【答案】D
【解析】
根據(jù)四邊形ABCD是矩形,BE⊥AC,可得∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB,故A正確;根據(jù)點(diǎn)E是AD邊的中點(diǎn),以及AD∥BC,得出△AEF∽△CBF,根據(jù)相似三角形對(duì)應(yīng)邊成比例,可得CF=2AF,故B正確;過D作DM∥BE交AC于N,得到四邊形BMDE是平行四邊形,求出BM=DE=BC,得到CN=NF,根據(jù)線段的垂直平分線的性質(zhì)可得結(jié)論,故C正確;設(shè)AE=a,AB=CD=b,則AD=2a,通過證明△BAE∽△ADC,可得=,進(jìn)而可得b=a,根據(jù)正切的定義可得tan∠CAD===,即可證明D錯(cuò)誤.
如圖,過D作DM∥BE交AC于N,
∵四邊形ABCD是矩形,
∴AD∥BC,∠ABC=90°,AD=BC,
∵BE⊥AC于點(diǎn)F,
∴∠EAC=∠ACB,∠ABC=∠AFE=90°,
∴△AEF∽△CAB,故A正確;
∵AD∥BC,
∴△AEF∽△CBF,
∴=,
∵AE=AD=BC,
∴=,
∴CF=2AF,故B正確;
∵DE∥BM,BE∥DM,
∴四邊形BMDE是平行四邊形,
∴BM=DE=BC,
∴BM=CM,
∴CN=NF,
∵BE⊥AC于點(diǎn)F,DM∥BE,
∴DN⊥CF,
∴DM垂直平分CF,
∴DF=DC,故C正確;
設(shè)AE=a,AB=CD=b,則AD=2a,
∵∠ABE+∠AEB=90°,∠FAE+∠AEB=90°,
∴∠BAE=∠FAE,
∵∠AFE=∠ADC=90°,
∴△BAE∽△ADC,
∴,即=,
∴b=a,
∴tan∠CAD===,故D錯(cuò)誤;
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,BC=2,CD=1,以AD為直徑的半圓O與BC相切于點(diǎn)E,連接BD,則陰影部分的面積為__________.(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(﹣4,8)和點(diǎn)B(2,n)在拋物線y=ax2上.
(Ⅰ)求該拋物線的解析式和頂點(diǎn)坐標(biāo),并求出n的值;
(Ⅱ)求點(diǎn)B關(guān)于x軸對(duì)稱點(diǎn)P的坐標(biāo),并在x軸上找一點(diǎn)Q,使得AQ+QB最短,求此時(shí)點(diǎn)Q的坐標(biāo);
(Ⅲ)平移拋物線y=ax2,記平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為A',點(diǎn)B的對(duì)應(yīng)點(diǎn)為B',點(diǎn)C(﹣2,0)是x軸上的定點(diǎn).
①當(dāng)拋物線向左平移到某個(gè)位置時(shí),A'C+CB'最短,求此時(shí)拋物線的解析式;
②D(﹣4,0)是x軸上的定點(diǎn),當(dāng)拋物線向左平移到某個(gè)位置時(shí),四邊形A'B'CD的周長最短,求此時(shí)拋物線的解析式(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,ABCD為正方形,將正方形的邊CB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到CE,記∠BCE=α,連接BE,DE,過點(diǎn)C作CF⊥DE于F,交直線BE于H.
(1)當(dāng)α=60°時(shí),如圖1,則∠BHC= ;
(2)當(dāng)45°<α<90°,如圖2,線段BH、EH、CH之間存在一種特定的數(shù)量關(guān)系,請(qǐng)你通過探究,寫出這個(gè)關(guān)系式: (不需證明);
(3)當(dāng)90°<α<180°,其它條件不變(如圖3),(2)中的關(guān)系式是否還成立?若成立,說明理由;若不成立,寫出你認(rèn)為成立的結(jié)論,并簡(jiǎn)要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一矩形OABC放在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,點(diǎn)E是邊AB上的一個(gè)動(dòng)點(diǎn)不與點(diǎn)A、B重合,過點(diǎn)E的反比例函數(shù)的圖象與邊BC交于點(diǎn)F
若的面積為,且,求k的值;
若,,反比例函數(shù)的圖象與邊AB、邊BC交于點(diǎn)E和F,當(dāng)沿EF折疊,點(diǎn)B恰好落在OC上,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,∠ACB=30°,將△ACD繞C點(diǎn)順時(shí)針旋轉(zhuǎn)α(0°<α<360°)至△A'CD'位置.
(1)如圖2,若AB=2,α=30°,求S△BCD′.
(2)如圖3,取AA′中點(diǎn)O,連OB、OD′、BD′.若△OBD′存在,試判定△OBD′的形狀.
(3)當(dāng)α=α1時(shí),OB=OD′,則α1= °;當(dāng)α=α2時(shí),△OBD′不存在,則α2= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AB為⊙O直徑,BC為⊙O切線,切點(diǎn)為B,CO平行于弦AD,作直線DC.
(1)求證:DC為⊙O切線;
(2) 若AD·OC=8,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+2分別與x軸,y軸交于A,B兩點(diǎn),與雙曲線y=交于E,F兩點(diǎn),若AB=2EF,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠ACB=90°.
求作:射線CG,使得CG∥AB.
下面是小東設(shè)計(jì)的尺規(guī)作圖過程.
作法:
①以點(diǎn)A為圓心,適當(dāng)長為半徑作弧,分別交AC,AB于D,E兩點(diǎn);
②以點(diǎn)C為圓心,AD長為半徑作弧,交AC的延長線于點(diǎn)F;
③以點(diǎn)F為圓心,DE長為半徑作弧,兩弧在∠FCB內(nèi)部交于點(diǎn)G;
④作射線CG.所以射線CG就是所求作的射線.
根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:連接FG、DE.
∵△ADE ≌ △_________,
∴∠DAE = ∠_________.
∴CG∥AB(___________________)(填推理的依據(jù)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com