【題目】如圖,在△ABC中,AB=AC,D是BA延長(zhǎng)線(xiàn)上的一點(diǎn),點(diǎn)E是AC的中點(diǎn).
(1)實(shí)踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫(xiě)作法);
①作∠DAC的平分線(xiàn)AM;
②連接BE并延長(zhǎng)交AM于點(diǎn)F;
(2)猜想與證明:試猜想AF與BC有怎樣的位置關(guān)系和數(shù)量關(guān)系,并說(shuō)明理由.
【答案】
(1)解:如圖所示;
(2)解:AF∥BC,且AF=BC,
理由如下:∵AB=AC,
∴∠ABC=∠C,
∴∠DAC=∠ABC+∠C=2∠C,
由作圖可得∠DAC=2∠FAC,
∴∠C=∠FAC,
∴AF∥BC,
∵E為AC中點(diǎn),
∴AE=EC,
在△AEF和△CEB中 ,
∴△AEF≌△CEB(ASA).
∴AF=BC
【解析】(1)如圖所示;
()由圖可猜想△AEF≌△CEB,所以可以猜得AF∥BC;AF=BC。由等腰三角形性質(zhì)結(jié)合外角平分線(xiàn)易得AF∥BC,又由E為AC中點(diǎn),AE=EC可得△AEF≌△CEB(ASA).AF=BC
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠MON=30°,點(diǎn)A1 , A2 , A3 , …在射線(xiàn)ON上,點(diǎn)B1 , B2 , B3 , …在射線(xiàn)OM上,△A1B1A2 , △A2B2A3 , △A3B3A4 , …均為等邊三角形,若OA1=2,則△A5B5A6的邊長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,線(xiàn)段A′B′是由線(xiàn)段AB經(jīng)過(guò)平移得到的,已知點(diǎn)A(﹣2,1)的對(duì)應(yīng)點(diǎn)為A′(3,1),點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′(4,0),則點(diǎn)B的坐標(biāo)為( )
A.(9,0)
B.(﹣1,0)
C.(3,﹣1)
D.(﹣3,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)E在BC上,且AE=CF;
(1)求證:Rt△ABE≌Rt△CBF;
(2)求證:AB=CE+BF;
(3)若∠CAE=30°,求∠ACF度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)兩位數(shù)的十位數(shù)字為a,個(gè)位數(shù)字比十位數(shù)字大2,這個(gè)兩位數(shù)是_____(用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=-x+4與x軸、y軸分別交于A(yíng)、B兩點(diǎn),直線(xiàn)BC與x軸、y軸分別交于C、B兩點(diǎn),連接BC,且 .
(1)求點(diǎn)A的坐標(biāo)及直線(xiàn)BC的函數(shù)關(guān)系式;
(2)點(diǎn)M在x軸上,連接MB,當(dāng)∠MBA+∠CBO=45°時(shí),求點(diǎn)M的坐標(biāo);
(3)若點(diǎn)P在x軸上,平面內(nèi)是否存在點(diǎn)Q,使點(diǎn)B、C、P、Q為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com