先化簡,再求值:(2a+b)2+5a(a+b)-(3a-b)2,其中a=3,b=-
2
3
考點(diǎn):整式的混合運(yùn)算—化簡求值
專題:
分析:先算乘法,再合并同類項(xiàng),最后代入求出即可.
解答:解:(2a+b)2+5a(a+b)-(3a-b)2
=4a2+4ab+b2+5a2+5ab-9a2+6ab-b2
=15ab,
當(dāng)a=3,b=-
2
3
時(shí),原式=15×3×(-
2
3
)=-30.
點(diǎn)評:本題考查了整式的混合運(yùn)算和求值的應(yīng)用,主要考查學(xué)生的化簡能力和計(jì)算能力,題目比較好,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

下列函數(shù):①y=-2x,②y=
8
x
,③y=-
1
x
,④y=
1
2
x-1
,其中,在每個(gè)象限內(nèi),函數(shù)值y都隨x的增大而減小的有(  )
A、①②B、③④C、①②③D、④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:平行四邊形ABCD中,∠ABC的平分線交AD于E,∠BCD的平分線交AD于F,且AB=3,DE=2,
(1)求平行四邊形ABCD的周長.  
(2)求證:BE⊥CF               
(3)若CF=2,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

商店有甲、乙、丙三種手表,每塊甲種表比乙種表貴20元,每塊乙種表比丙種表貴30元,現(xiàn)所有甲種表總金額為6000元,乙種表總金額為9000元,丙種表總金額為3000元,并知乙種表的塊數(shù)與甲、丙兩種表的總塊數(shù)相等,求每種表的單價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀下列材料,解答下面的問題:
我們知道方程2x+3y=12有無數(shù)個(gè)解,但在實(shí)際生活中我們往往只需求出其正整數(shù)解.
例:由2x+3y=12,得:y=
12-2x
3
,根據(jù)x、y為正整數(shù),運(yùn)用嘗試法可以知道方程2x+3y=12的正整數(shù)解為
x=3
y=2

問題:
(1)請你直接寫出方程3x-y=6的一組正整數(shù)解
 

(2)若
12
x-3
為自然數(shù),則滿足條件的正整數(shù)x的值有
 
個(gè).
A.5            B.6            C.7             D.8
(3)七年級某班為了獎(jiǎng)勵(lì)學(xué)生學(xué)習(xí)的進(jìn)步,購買單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)48元,問有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(3-x)2+x2=5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,△ABC內(nèi)接于半徑為4cm的⊙O,AB為直徑,弧BC長為
3
cm.
(1)計(jì)算∠ABC的度數(shù);
(2)將與△ABC全等的△FED如圖2擺放,使兩個(gè)三角形的對應(yīng)邊DF與AC有一部分重疊,△FED的最長邊EF恰好經(jīng)過弧AB的中點(diǎn)M.求證:AF=AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

|-3|+(-1)2011×(π-3)0-
9
+(
1
2
)-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解不等式(組),并把解集在數(shù)軸上表示出來.
(1)
x
2
-
5x+7
3
≥1-
7x-2
4
;
(2)
5(x+3)>3(x+1)
x+2
3
-
x+1
2
>1

查看答案和解析>>

同步練習(xí)冊答案