【題目】隨著科技的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學(xué)興趣小組設(shè)計(jì)了一份你最喜歡的支付方式調(diào)查問卷(每人必選且只選一種),在某商場隨機(jī)調(diào)查了部分顧客,并將統(tǒng)計(jì)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給的信息解答下列問題:

1)這次活動共調(diào)查了  人,在扇形統(tǒng)計(jì)圖中,表示現(xiàn)金支付的扇形圓心角的度數(shù)為    ;

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的眾數(shù)    

3)運(yùn)用這次的調(diào)查結(jié)果估計(jì)1000名顧客中用支付寶支付的有多少人?

4)在一次購物中,嘉嘉和琪琪都想從微信支付寶、銀行卡三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

【答案】1200,90°;(2)見解析,微信;(3225人;(4

【解析】

1)用支付寶、現(xiàn)金及其他的人數(shù)和除以這三者的百分比之和可得總?cè)藬?shù),再用乘以“現(xiàn)金”人數(shù)所占的百分比即可得圓心角的度數(shù);

2)用總?cè)藬?shù)乘以微信、銀行卡對應(yīng)的百分比可得微信、銀行卡的人數(shù),從而補(bǔ)全條形統(tǒng)計(jì)圖,再根據(jù)眾數(shù)的定義求解可得支付方式的眾數(shù);

3)用總?cè)藬?shù)乘以支付寶對應(yīng)的百分比可得“支付寶”的人數(shù);

4)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩人恰好選擇同一種支付方式的情況,再利用概率公式即可求得答案.

解:(1這次活動共調(diào)查了(人,

在扇形統(tǒng)計(jì)圖中,表示“現(xiàn)金”支付的扇形圓心角的度數(shù)為,

故答案為:200;

2)微信人數(shù)為200×30%=60人,銀行卡人數(shù)為200×15%=30人.

補(bǔ)全圖形如下圖,

由條形統(tǒng)計(jì)圖可知,選擇微信支付的人數(shù)有60人,最多,所以支付方式的“眾數(shù)”是“微信”;

31000×=225(人).

4)將微信記為A,支付寶記為B,銀行卡記為C,畫樹狀圖如圖,

∵共有9種等可能的結(jié)果,其中兩人恰好選擇同一種支付方式的有3種,

∴兩人恰好選擇同一種支付方式的概率為=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年全國兩會于35日在人民大會堂開幕,某社區(qū)為了解居民對此次兩會的關(guān)注程度,在全社區(qū)范圍內(nèi)隨機(jī)抽取部分居民進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把居民對兩會的關(guān)注程度分成淡薄、一般、較強(qiáng)、很強(qiáng)四個(gè)層次,并繪制成如下不完整的統(tǒng)計(jì)圖:

請結(jié)合圖表中的信息,解答下列問題:

(1)此次調(diào)查一共隨機(jī)抽取了_____名居民;

(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)扇形統(tǒng)計(jì)圖中,很強(qiáng)所對應(yīng)扇形圓心角的度數(shù)為_____;

(4)若該社區(qū)有1500人,則可以估計(jì)該社區(qū)居民對兩會的關(guān)注程度為淡薄層次的約有 _____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】快車從甲地駛往乙地,慢車從乙地駛往甲地,兩車同時(shí)出發(fā)并且在同一條公路上勻速行駛.圖中折線表示快、慢兩車之間的路程與它們的行駛時(shí)間之間的函數(shù)關(guān)系.小欣同學(xué)結(jié)合圖像得出如下結(jié)論:

快車途中停留了;快車速度比慢車速度多;

圖中;快車先到達(dá)目的地.

其中正確的是(

A.①③B.②③C.②④D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸于點(diǎn)A,交軸于點(diǎn)B,拋物線經(jīng)過點(diǎn)A,交軸于點(diǎn),點(diǎn)P為直線AB下方拋物線上一動點(diǎn),過點(diǎn)PD,連接AP

1)求拋物線的解析式;

2)若以點(diǎn)為頂點(diǎn)的三角形與相似,求點(diǎn)P的坐標(biāo);

3)將繞點(diǎn)A旋轉(zhuǎn),當(dāng)點(diǎn)O的對應(yīng)點(diǎn)落在拋物線的對稱軸上時(shí),請直接寫出點(diǎn)B的對應(yīng)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙的外接圓,為直徑,點(diǎn)是⊙外一點(diǎn),且,連接于點(diǎn),延長交⊙于點(diǎn)

.證明:=;

.,證明是⊙的切線;

.在⑵的條件下,連接交⊙于點(diǎn),連接;,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為O的直徑,C、D為O上的兩點(diǎn),BAC=DAC,過點(diǎn)C做直線EFAD,交AD的延長線于點(diǎn)E,連接BC.

(1)求證:EF是O的切線;

(2)若DE=1,BC=2,求劣弧的長l.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在初三綜合素質(zhì)評定結(jié)束后,為了了解年級的評定情況,現(xiàn)對初三某班的學(xué)生進(jìn)行了評定等級的調(diào)查,繪制了如下男女生等級情況折線統(tǒng)計(jì)圖和全班等級情況扇形統(tǒng)計(jì)圖.

(1)調(diào)查發(fā)現(xiàn)評定等級為合格的男生有2人,女生有1人,則全班共有   名學(xué)生.

(2)補(bǔ)全女生等級評定的折線統(tǒng)計(jì)圖.

(3)根據(jù)調(diào)查情況,該班班主任從評定等級為合格和A的學(xué)生中各選1名學(xué)生進(jìn)行交流,請用樹形圖或表格求出剛好選中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線的頂點(diǎn)為,與軸相交于點(diǎn),先將拋物線沿軸翻折,再向右平移p個(gè)單位長度后得到拋物,直線經(jīng)過,兩點(diǎn).

1)求點(diǎn)的坐標(biāo),并結(jié)合圖象直接寫出不等式:的解集;

2)若拋物線的頂點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱,求p的值及拋物線的解析式;

3)若拋物線軸的交點(diǎn)為(點(diǎn)、分別與拋物線上點(diǎn)、對應(yīng)),試問四邊形是何種特殊四邊形?并說明其理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,P為線段上的一動點(diǎn),且和BC不重合,連接,過點(diǎn)P交射線于點(diǎn)E

聰聰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對這個(gè)問題進(jìn)行了研究:

1)通過推理,他發(fā)現(xiàn),請你幫他完成證明.

2)利用幾何畫板,他改變的長度,運(yùn)動點(diǎn)P,得到不同位置時(shí),、的長度的對應(yīng)值:

當(dāng)時(shí),得表1

1

2

3

4

5

0.83

1.33

1.50

1.33

0.83

當(dāng)時(shí),得表2

1

2

3

4

5

6

7

1.17

2.00

2.50

2.67

2.50

2.00

1.17

這說明,點(diǎn)P在線段上運(yùn)動時(shí),要保證點(diǎn)E總在線段上,的長度應(yīng)有一定的限制.

①填空:根據(jù)函數(shù)的定義,我們可以確定,在的長度這兩個(gè)變量中,_____的長度為自變量,_____的長度為因變量;

②設(shè),當(dāng)點(diǎn)P在線段上運(yùn)動時(shí),點(diǎn)E總在線段上,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案