如圖:△ABC中,D,E分別在AB、AC上,且DE與BC不平行,請?zhí)钌弦粋適當(dāng)?shù)臈l件,可得△ADE∽△ABC.________.

∠ADE=∠C或∠AED=∠B或
分析:欲證△ADE∽△ABC,通過觀察發(fā)現(xiàn)兩個三角形已經(jīng)具備一組角對應(yīng)相等,即∠A=∠A,此時,再求夾此對應(yīng)角的兩邊對應(yīng)成比例或另一組對應(yīng)角相等即可.
解答:∵∠A=∠A,
∴當(dāng)∠ADE=∠C或∠AED=∠B或時,△ADE∽△ABC.
點評:本題考查相似三角形的判定.識別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對應(yīng)邊成比例、對應(yīng)角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案