如圖,四邊形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,若CD=5,則四邊形ABCD的面積為 .
10
解析試題分析:作AE⊥AC,DE⊥AE,兩線交于E點(diǎn),作DF⊥AC垂足為F點(diǎn),求出∠BAC=∠DAE,根據(jù)AAS證△ABC≌△ADE,推出BC=DE,AC=AE,設(shè)BC=a,則DE=a,DF=AE=AC=4BC=4a,求出CF=3a,在Rt△CDF中,由勾股定理得出(3a)2+(4a)2=52,求出a=1,根據(jù)S四邊形ABCD=S梯形ACDE求出梯形ACDE的面積即可.
作AE⊥AC,DE⊥AE,兩線交于E點(diǎn),作DF⊥AC垂足為F點(diǎn),
∵∠BAD=∠CAE=90°,
即∠BAC+∠CAD=∠CAD+∠DAE,
∴∠BAC=∠DAE,
∵∠E=∠ACB=90°,AB=AD
∴△ABC≌△ADE(AAS),
∴BC=DE,AC=AE,
設(shè)BC=a,則DE=a,DF=AE=AC=4BC=4a,
CF=AC-AF=AC-DE=3a,
在Rt△CDF中,由勾股定理得:CF2+DF2=CD2,
即(3a)2+(4a)2=52,
解得:a=1,
=×(a+4a)×4a
=10a2
=10.
考點(diǎn):勾股定理,全等三角形的性質(zhì)和判定,梯形的性質(zhì)
點(diǎn)評(píng):本題綜合性較強(qiáng),難度較大,是中考常見(jiàn)題,讀懂題意正確作出輔助線是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com