【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(-3,0),其對稱軸為直線x=-1,有下列結(jié)論:①abc<0;②a-b-2c>0;③關于的方程ax2+(b-m)x+c=m有兩個不相等的實數(shù)根;④若,是拋物線上兩點,且,則實數(shù)的取值范圍是.其中正確結(jié)論的個數(shù)是( )
A.B.C.D.
【答案】D
【解析】
根據(jù)拋物線開口方向、對稱軸、及與y軸的交點位置可對①進行判斷;根據(jù)對稱軸和拋物線與x的一個交點(-3,0)可得另一個交點坐標為(1,0),可知=-3,即c=-3a,根據(jù)對稱軸方程可得b=2a,代入a-b-2c,根據(jù)a的符號即可對②進行判斷;根據(jù)b2-4ac>0,b=2a,判斷方程ax2+(b-m)x+c=m的判別式的符號即可對③進行判斷;把P、Q兩點坐標代入拋物線解析式,根據(jù)y1>y2列出不等式,根據(jù)c=-3a,b=2a解不等式求出m的取值范圍即可對④進行判斷.
∵拋物線開口向上,與y軸交點在y軸負半軸,
∴a>0,c<0,
∵對稱軸x==-1<0,
∴b>0,b=2a,
∴abc<0,故①正確,
∵對稱軸為x=-1,與x軸的一個交點為A(-3,0),
∴拋物線與x軸的另一個交點為(1,0),
∴=-3,即c=-3a,
∴a-b-2c=a-2a+6a=5a>0,故②正確,
方程ax2+(b-m)x+c=m的判別式為△=(b-m)2-4a(c-m)=b2-4ac+m2-2m(b-2a)
∵拋物線y=ax2+bx+c與x軸有兩個交點,
∴b2-4ac>0,
∵b=2a,
∴△= b2-4ac+m2>0,
∴方程ax2+(b-m)x+c=m有兩個不相等的實數(shù)根,故③正確,
∵P(-5,y1)、Q(m,y2)是拋物線上兩點,
∴y1=25a-5b+c,y2=am2+bm+c,
∵y1>y2,
∴25a-5b>am2+bm,
∵b=2a,
∴25a-10a>am2+2am,
∵a>0,
∴m2+2m-15<0,
解得:-5<m<3,故④正確,
綜上所述:正確的結(jié)論有①②③④,共4個,
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】下面是小東設計的“過圓外一點作這個圓的兩條切線”的尺規(guī)作圖過程.
已知:⊙O及⊙O外一點P.
求作:直線PA和直線PB,使PA切⊙O于點A,PB切⊙O于點B.
作法:如圖,
①連接OP,分別以點O和點P為圓心,大于OP的同樣長為半徑作弧,兩弧分別交于點M,N;
②連接MN,交OP于點Q,再以點Q為圓心,OQ的長為半徑作弧,交⊙O于點A和點B;
③作直線PA和直線PB.
所以直線PA和PB就是所求作的直線.
根據(jù)小東設計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵OP是⊙Q的直徑,
∴ ∠OAP=∠OBP=________°( )(填推理的依據(jù)).
∴PA⊥OA,PB⊥OB.
∵OA,OB為⊙O的半徑,
∴PA,PB是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,點E是AB上一點,且AE=2EB .
(1)求的值.
(2)求的值.
(3)如果△AEF的面積=8cm2,分別求出△CDF的面積和△ADF的面積
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一種拉桿式旅行箱的示意圖如圖所示,箱體長AB=50cm,拉桿最大伸長距離BC=35cm,(點A、B、C在同一條直線上),在箱體的底端裝有一圓形滾輪⊙A,⊙A與水平地面切于點D,AE∥DN,某一時刻,點B距離水平面38cm,點C距離水平面59cm.
(1)求圓形滾輪的半徑AD的長;
(2)當人的手自然下垂拉旅行箱時,人感覺較為舒服,已知某人的手自然下垂在點C處且拉桿達到最大延伸距離時,點C距離水平地面73.5cm,求此時拉桿箱與水平面AE所成角∠CAE的大小(精確到1°,參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一個直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的立桿上點T處匯合.如圖所示為截面圖,以水平方向為x軸,噴水池中心為原點建立直角坐標系
(1)求水柱所在拋物線(第一象限部分)的函數(shù)解析式
(2)正在噴水時,身高1.8米的人,應站在離水池中心多遠的地方就能不被淋濕?
(3)在噴出水柱的形狀不變的前提下,把水池的直徑擴大到32米,各方向噴出的水柱仍在噴水池中心的立桿上點T處匯合,請?zhí)骄繑U建后噴水池水柱的最大高度
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】利川市南門大橋是上世紀90年代修建的一座石拱橋,其主橋孔的橫截面是一條拋物線的一部分,2019年在維修時,施工隊測得主橋孔最高點到水平線的高度為.寬度為.如圖所示,現(xiàn)以點為原點,所在直線為軸建立平面直角坐標系.
(1)直接寫出點及拋物線頂點的坐標;
(2)求出這條拋物線的函數(shù)解析式;
(3)施工隊計劃在主橋孔內(nèi)搭建矩形“腳手架”,使點在拋物線上,點在水平線上,為了籌備材料,需求出“腳手架”三根鋼管的長度之和的最大值是多少?請你幫施工隊計算.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,=5,=9,=,動點從出發(fā),沿射線方向以每秒5個單位長度的速度運動,動點從點出發(fā),一相同的速度在線段上由向運動,當點運動到點時,兩點同時停止運動,以為邊作正方形(按逆時針排序),以為邊在上方作正方形.
(1)_______.
(2)設點運動時間為,正方形的面積為,請?zhí)骄?/span>是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.
(3)當為何值時,正方形的某個頂點(點除外)落在正方形的邊上,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2+bx+3經(jīng)過點A(﹣1,8),頂點為M;
(1)求拋物線的表達式;
(2)設拋物線對稱軸與x軸交于點B,連接AB、AM,求△ABM的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com