【題目】在Rt△ABC中,∠ACB=90°,AC=BC=2,點(diǎn)P為BC邊上的一個(gè)動(dòng)點(diǎn)(不與B.C重合)點(diǎn)P關(guān)于直線AC、AB的對(duì)稱點(diǎn)分別為M、N,連接MN交AC于點(diǎn)E,交AB于點(diǎn)F.
(1)當(dāng)點(diǎn)P為線段BC的中點(diǎn)時(shí),求∠M的正切值
(2)當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí)(不與B.C重合),連接AM、AN,求證:
①△AMN為等腰直角三角形
②△AEF∽△BAM
【答案】(1);(2)證明見(jiàn)解析;
【解析】
(1)連接NB,如圖1,先由△ACB為等腰直角三角形得到∠A=∠CBA=45°,則根據(jù)對(duì)稱的性質(zhì)得AB垂直PN,BN=BP,則∠NBA=∠PBA=45°,所以∠PBN=90°,接著計(jì)算出MC=CP=PB=NB=1,然后利用正切的定義求解
(2)①連接AP,如圖2,利用對(duì)稱的性質(zhì)得AP=AM=AN,∠1=∠2,∠3=∠4,則∠MAN=90°,于是可判斷△AMN為等腰直角三角形
②利用△AMN為等腰直角三角形得到∠5=∠6=45°,再證明∠AEF=∠BAM,加上∠B=∠EAF=45°,則根據(jù)相似三角形的判定可判斷△AEF∽△BAM
(1)連接NB,如圖1
∵在Rt△ABC中,∠ACB=90°,AC=BC
∴△ACB為等腰直角三角形,
∴∠A=∠CBA=45°
∵點(diǎn)P關(guān)于直線AB的對(duì)稱點(diǎn)為,關(guān)于直線AC的對(duì)稱點(diǎn)為M,
∴AB垂直PN,BN=BP
∴∠NBA=∠PBA=45°
∴∠PBN=90°,
∵點(diǎn)P為BC的中點(diǎn),BC=2,
∴MC=CP=PB=NB=1
∴tan∠M=
(2)證明:①連接AP,如圖2,
∵點(diǎn)P關(guān)于直線AC、AB的對(duì)稱點(diǎn)分別為M、N
∴AP=AM=AN,∠1=∠2,∠3=∠4
∴∠CAB=∠2+∠3=45°
∴∠MAN=90°
∴△AMN為等腰直角三角形
②∵△AMN為等腰直角三角形
∴∠5=∠6=45°
∴∠AEF=∠5+∠1=45°+∠1,
∵∠EAF=45°
∴∠BAM=∠EAF+∠1=45°+∠1
∴∠AEF=∠BAM,
又∵∠B=∠EAF=45°
∴△AEF∽△BAM
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017四川省內(nèi)江市)如圖,已知直線l1∥l2,l1、l2之間的距離為8,點(diǎn)P到直線l1的距離為6,點(diǎn)Q到直線l2的距離為4,PQ=,在直線l1上有一動(dòng)點(diǎn)A,直線l2上有一動(dòng)點(diǎn)B,滿足AB⊥l2,且PA+AB+BQ最小,此時(shí)PA+BQ=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 了解“孝感市初中生每天課外閱讀書籍時(shí)間的情況”最適合的調(diào)查方式是全面調(diào)查
B. 甲乙兩人跳繩各10次,其成績(jī)的平均數(shù)相等,,則甲的成績(jī)比乙穩(wěn)定
C. 三張分別畫有菱形,等邊三角形,圓的卡片,從中隨機(jī)抽取一張,恰好抽到中心對(duì)稱圖形卡片的概率是
D. “任意畫一個(gè)三角形,其內(nèi)角和是”這一事件是不可能事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線軸,且直線l與拋物線和y軸分別交于點(diǎn)A,B,C,點(diǎn)D為拋物線的頂點(diǎn).若點(diǎn)E的坐標(biāo)為,點(diǎn)A的橫坐標(biāo)為1.
(1)線段AB的長(zhǎng)度等于________;
(2)點(diǎn)P為線段AB上方拋物線上的一點(diǎn),過(guò)點(diǎn)P作AB的垂線交AB于點(diǎn)H,點(diǎn)F為y軸上一點(diǎn),當(dāng)的面積最大時(shí),求的最小值;
(3)在(2)的條件下,刪除拋物線在直線PH左側(cè)部分圖象并將右側(cè)部分圖象沿直線PH翻折,與拋物線在直線PH右側(cè)部分圖象組成新的函數(shù)M的圖象.現(xiàn)有平行于FH的直線,若直線與函數(shù)M的圖象有且只有2個(gè)交點(diǎn),求t的取值范圍(請(qǐng)直接寫出t的取值范圍,無(wú)需解答過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年永州市初中體育水平測(cè)試進(jìn)行改革,增加了自選項(xiàng)目,學(xué)生可以從籃球運(yùn)球、足球運(yùn)球、排球向上墊球三項(xiàng)中必須選一項(xiàng),另外從一分鐘跳繩、仰臥起坐(女)或引體向上(男)、原地正面擲實(shí)心球、立定跳遠(yuǎn)中必須選一項(xiàng).現(xiàn)對(duì)永州市某校的選考項(xiàng)目情況進(jìn)行調(diào)查,對(duì)調(diào)查結(jié)果進(jìn)行了分析統(tǒng)計(jì)并制作了兩幅統(tǒng)計(jì)圖:
項(xiàng)目 | 籃球 | 足球 | 排球 | |||
性別 | 男 | 女 | 男 | 女 | 男 | 女 |
人數(shù) | 30 | 10 | 24 | 12 | 6 | 28 |
平均得分 | 8 | 7 | 8.5 | 6 | 9 | 10 |
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求抽查的這些男生的體育測(cè)試平均分;
(3)若該校準(zhǔn)備從這次體育測(cè)試成績(jī)好的學(xué)生中選出10名參加全市運(yùn)動(dòng)會(huì).現(xiàn)在有19名學(xué)生報(bào)名,小明是這19名同學(xué)之一,小明在知道自己這次成績(jī)后還需知道這19名學(xué)生成績(jī)的______,就能知道自己能不能參加市運(yùn)動(dòng)會(huì).
A.平均數(shù)B.眾數(shù)C.中位數(shù)D.方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(m+2)x+2m=0.
(1)求證:不論m為何值,該方程總有兩個(gè)實(shí)數(shù)根;
(2)若直角△ABC的兩直角邊AB、AC的長(zhǎng)是該方程的兩個(gè)實(shí)數(shù)根,斜邊BC的長(zhǎng)為3,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表作,書中記載:“今有圓材埋壁中,不知大小.以鋸鋸之,深1寸,鋸道長(zhǎng)1尺,問(wèn)經(jīng)幾何?“其意思為:“如圖,今有一圓形木材埋在墻壁中,不知其大小用鋸子去鋸這個(gè)木材,鋸口深1寸(即DE=1寸),鋸道長(zhǎng)1尺(即弦AB=1尺),問(wèn)這塊圓形木材的直徑是多少?”該問(wèn)題的答案是_____(注:1尺=10寸)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】重慶某大型車輛企業(yè)從去年開始出售“大鼻子安全校車”(以下簡(jiǎn)稱校車).經(jīng)統(tǒng)計(jì)發(fā)現(xiàn),該校車月銷售量P(輛)與月份x(1≤x≤12且x取整數(shù))之間的函數(shù)關(guān)系如下表所示:
月份x | 1 | 2 | 3 | 4 | 5 | … |
月銷售量P(輛) | 66 | 68 | 70 | 72 | 74 | … |
(1)請(qǐng)觀察題中的表格,用所學(xué)過(guò)的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí),求出P與x之間的函數(shù)關(guān)系式;
(2)若該校車在去年上半年的銷售價(jià)格y1(萬(wàn)元)與月份x之間的函數(shù)關(guān)系式為y1=﹣0.5x+36(1≤x≤6且x取整數(shù));去年下半年的銷售價(jià)格y2(萬(wàn)元)與月份x之間的函數(shù)關(guān)系式為y2=﹣x+39(7≤x≤12且x取整數(shù)).此外,已知生產(chǎn)每輛校車的材料成本為12萬(wàn)元,人力和其他成本共4萬(wàn)元.問(wèn)該企業(yè)去年哪個(gè)月銷售校車的利潤(rùn)最大,并求出這個(gè)最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),連接AP并延長(zhǎng),交BC于點(diǎn)Q.連接DP.將△ADP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至△ABP'.連結(jié)PP',若AP=1,PB=2,PD=,則正方形的邊長(zhǎng)為( 。
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com