【題目】在平面直角坐標(biāo)系xOy中,定義點(diǎn)P(x,y)的變換點(diǎn)為P′(x+y,x﹣y).
(1)如圖1,如果⊙O的半徑為2 ,
①請(qǐng)你判斷M(2,0),N(﹣2,﹣1)兩個(gè)點(diǎn)的變換點(diǎn)與⊙O的位置關(guān)系;
②若點(diǎn)P在直線y=x+2上,點(diǎn)P的變換點(diǎn)P′在⊙O的內(nèi),求點(diǎn)P橫坐標(biāo)的取值范圍.
(2)如圖2,如果⊙O的半徑為1,且P的變換點(diǎn)P′在直線y=﹣2x+6上,求點(diǎn)P與⊙O上任意一點(diǎn)距離的最小值.
【答案】
(1)解:①M(fèi)(2,0)的變換點(diǎn)M′的坐標(biāo)為(2,2),則OM′= =2 ,所以點(diǎn)M(2,0)的變換點(diǎn)在⊙O上;
N(﹣2,﹣1)的變換點(diǎn)N′的坐標(biāo)為(﹣3,﹣1),則ON′= = >2 ,所以點(diǎn)N(﹣2,﹣1)的變換點(diǎn)在⊙O外;
②設(shè)P點(diǎn)坐標(biāo)為(x,x+2),則P點(diǎn)的變換點(diǎn)為P′的坐標(biāo)為(2x+2,﹣2),則OP′= ,
∵點(diǎn)P′在⊙O的內(nèi),
∴ <2 ,
∴(2x+2)2<4,即(x+1)2<1,
∴﹣1<x+1<1,解得﹣2<x<0,
即點(diǎn)P橫坐標(biāo)的取值范圍為﹣2<x<0
(2)解:設(shè)點(diǎn)P′的坐標(biāo)為(x,﹣2x+6),P(m,n),
根據(jù)題意得m+n=x,m﹣n=﹣2x+6,
∴3m+n=6,
即n=﹣3m+6,
∴P點(diǎn)坐標(biāo)為(m,﹣3m+6),
∴點(diǎn)P在直線y=﹣3x+6上,
設(shè)直線y=﹣3x+6與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,過(guò)O點(diǎn)作OH⊥AB于H,交⊙O于C,如圖2,
則A(2,0),B(0,6),
∴AB= =2 ,
∵ OHAB= OAOB,
∴OH= = ,
∴CH= ﹣1,
即點(diǎn)P與⊙O上任意一點(diǎn)距離的最小值為 ﹣1.
【解析】(1)①根據(jù)新定義得到點(diǎn)M的變換點(diǎn)M′的坐標(biāo)為(2,2),于是根據(jù)勾股定理計(jì)算出OM′=2 ,則根據(jù)點(diǎn)與圓的位置關(guān)系的判定方法可判斷點(diǎn)M的變換點(diǎn)在⊙O上;同樣方法可判斷點(diǎn)N(﹣2,﹣1)的變換點(diǎn)在⊙O外②利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,設(shè)P點(diǎn)坐標(biāo)為(x,x+2),利用新定義得到P點(diǎn)的變換點(diǎn)為P′的坐標(biāo)為(2x+2,﹣2),則根據(jù)勾股定理計(jì)算出OP′= ,然后利用點(diǎn)與圓的位置關(guān)系得到 <2 ,解不等式得﹣2<x<0;(2)設(shè)點(diǎn)P′的坐標(biāo)為(x,﹣2x+6),P(m,n),根據(jù)新定義得到m+n=x,m﹣n=﹣2x+6,消去x得3m+n=6,則n=﹣3m+6,于是得到P點(diǎn)坐標(biāo)為(m,﹣3m+6),則可判斷點(diǎn)P在直線y=﹣3x+6上,設(shè)直線y=﹣3x+6與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,過(guò)O點(diǎn)作OH⊥AB于H,交⊙O于C,如圖2,易得A(2,0),B(0,6),利用勾股定理計(jì)算出AB=2 ,再利用面積法計(jì)算出OH= ,所以CH= ﹣1,當(dāng)點(diǎn)P在H點(diǎn)時(shí),PC為點(diǎn)P與⊙O上任意一點(diǎn)距離的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y1=ax2+bx+3的圖像與x軸相交于點(diǎn)A(﹣3,0)、B(1,0),交y軸于點(diǎn)C,C,D是二次函數(shù)圖像上的一對(duì)對(duì)稱(chēng)點(diǎn),一次函數(shù)y2=mx+n的圖像經(jīng)過(guò)B、D兩點(diǎn).
(1)求二次函數(shù)的解析式及點(diǎn)D的坐標(biāo);
(2)根據(jù)圖像寫(xiě)出y2>y1時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為BC的中點(diǎn),直角∠MDN繞點(diǎn)D旋轉(zhuǎn),DM,DN分別與邊AB,AC交于E,F兩點(diǎn),下列結(jié)論:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正確結(jié)論是( )
A. ①②④ B. ②③④
C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平行四邊形ABCD中,點(diǎn)E在邊AD上,以BE為折痕,將△ABE向上翻折,點(diǎn)A正好落在CD上的點(diǎn)F,若△FDE的周長(zhǎng)為7,△FCB的周長(zhǎng)為19,求FC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,EF過(guò)點(diǎn)O且與AB、CD分別相交于點(diǎn)E、F,連接EC.
(1)求證:OE=OF;
(2)若EF⊥AC,平行四邊形ABCD的周長(zhǎng)是22,求△BEC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近兩年,國(guó)際市場(chǎng)黃金價(jià)格漲幅較大,中國(guó)交通銀行推出“沃德金”的理財(cái)產(chǎn)品,即以黃金為投資產(chǎn)品,投資者從黃金價(jià)格的上漲中賺取利潤(rùn).上周五黃金的收盤(pán)價(jià)為元/克,下表是本周星期一至星期五黃金價(jià)格的變化情況.(注:星期一至星期五開(kāi)市,星期六、星期日休市)
星期 | 一 | 二 | 三 | 四 | 五 |
收盤(pán)價(jià)的變化(與前一天收盤(pán)價(jià)比較) |
問(wèn)
本周星期三黃金的收盤(pán)價(jià)是多少?
本周黃金收盤(pán)時(shí)的最高價(jià)、最低價(jià)分別是多少?
上周,小王以周五的收盤(pán)價(jià)元/克買(mǎi)入黃金克,已知買(mǎi)入與賣(mài)出時(shí)均需支付成交金額的千分之五的交易費(fèi),賣(mài)出黃金時(shí)需支付成交金額的千分之三的印花稅.本周,小王以周五的收盤(pán)價(jià)全部賣(mài)出黃金克,他的收益情況如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠DAB=∠CAE,要使△ABC∽△ADE,則補(bǔ)充的一個(gè)條件可以是(注:只需寫(xiě)出一個(gè)正確答案即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形 ABCD 中, AB = a, BC = b, a > b .以 AB 邊為軸將長(zhǎng)方形旋轉(zhuǎn)一周形成 圓柱體甲,再以 BC 邊為軸將長(zhǎng)方形旋轉(zhuǎn)一周形成圓柱體乙.記兩個(gè)圓柱體的體積分別為 V甲 ,V乙 ,側(cè)面積分別為 S甲, S乙 ,則下列正確的是( )
A. V甲 > V乙 , S甲=S乙
B. V甲 < V乙 , S甲= S乙
C. V甲= V乙 , S甲= S乙
D. V甲 > V乙 , S甲 < S乙
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知?jiǎng)狱c(diǎn)P在函數(shù)(x>0)的圖象上運(yùn)動(dòng),PM⊥x軸于點(diǎn)M,PN⊥y軸于點(diǎn)N,線段PM、PN分別與直線AB:y=﹣x+1交于點(diǎn)E,F,則AFBE的值為( 。
A. 4 B. 2 C. 1 D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com