【題目】如圖,已知矩形ABCD,AB6BC10,E,F分別是AB,BC的中點,AFDE相交于I,與BD相交于H,則四邊形BEIH的面積為( 。

A.6B.7C.8D.9

【答案】B

【解析】

延長AFDCQ點,由矩形的性質(zhì)得出CDAB6,ABCD,ADBC,得出1,△AEI∽△QDE,因此CQABCD6,△AEI的面積:△QDI的面積=116,根據(jù)三角形的面積公式即可得出結(jié)果.

延長AFDCQ點,如圖所示:

EF分別是AB,BC的中點,

AEAB3,BFCFBC5,

∵四邊形ABCD是矩形,

CDAB6,ABCD,ADBC,

1,△AEI∽△QDI,

CQABCD6,△AEI的面積:△QDI的面積=(2

AD10,

∴△AEIAE邊上的高=2

∴△AEI的面積=×3×23,

∵△ABF的面積=×5×615,

ADBC

∴△BFH∽△DAH,

,

∴△BFH的面積=×2×55,

∴四邊形BEIH的面積=△ABF的面積﹣△AEI的面積﹣△BFH的面積=15357

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的解析式是y=x2﹣2x﹣3.

(1)與y軸的交點坐標是   ,頂點坐標是   

(2)在坐標系中利用描點法畫出此拋物線;

x

y

(3)結(jié)合圖象回答:當(dāng)﹣2<x<2時,函數(shù)值y的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲車從地出發(fā)勻速駛向地,到達地后,立即按原路原速返回地;乙車從地出發(fā)沿相同路線勻速駛向地,出發(fā)小時后,乙車因故障在途中停車小時,然后繼續(xù)按原速駛向地,乙車在行駛過程中的速度是千米/時,甲車比乙車早小時到達地,兩車距各自出發(fā)地的路程千米與甲車行駛時間小時之間的函數(shù)關(guān)系如圖所示,請結(jié)合圖象信息解答下列問題:

1)寫出甲車行駛的速度,并直接寫出圖中括號內(nèi)正確的數(shù)__ __

2)求甲車從地返回地的過程中,的函數(shù)關(guān)系式(不需要寫出自變量的取值范圍)

3)直接寫出甲車出發(fā)多少小時,兩車恰好相距千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC中,∠C=90°,AB=5,BC=3,S、Q兩點同時分別從A、C出發(fā),點S以每秒2個單位的速度沿著AC向點C運動,點Q以每秒1個單位的速度沿著CB向點B運動.當(dāng)其中一點到達終點時,另一點也隨之停止運動

(1)求幾秒時SQ的長為2

(2)求幾秒時,△SQC的面積最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。

(1)求證:方程恒有兩個不相等的實數(shù)根;

(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個斜拋物體的水平運動距離為xm),對應(yīng)的高度記為hm),且滿足hax2+bx2a(其中a0).已知當(dāng)x0時,h2;當(dāng)x10時,h2

1)求h關(guān)于x的函數(shù)表達式;

2)求斜拋物體的最大高度和達到最大高度時的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC=4cm,∠B=30°,點P從點B出發(fā),以cm/s的速度沿BC方向運動到點C停止,同時點Q從點B出發(fā)以2cm/s的速度沿B→A→C運動到點C停止.若△BPQ的面積為y運動時間為xs),則下列圖象中能大致反映yx之間關(guān)系的是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓O的外接圓,AE平分交圓O于點E,交BC于點D,過點E作直線

1)判斷直線l與圓O的關(guān)系,并說明理由;

2)若的平分線BFAD于點F,求證:;

3)在(2)的條件下,若,,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接2019年的到來,銅陵萬達廣場某商鋪將進價為40元的禮盒按50元售出時,能賣出500盒.商鋪發(fā)現(xiàn)這種禮盒每漲價0.1元時,其銷量就減少1盒.

1)若該商鋪計劃賺得9000元的利潤,售價應(yīng)定為多少元?

2)物價部門規(guī)定:該禮盒售價不得超過進價的1.5倍.問:此時禮盒售價定為多少元,才能使得商鋪的獲利最大?且最大利潤為多少元?

查看答案和解析>>

同步練習(xí)冊答案