(2011•陜西)如圖,二次函數(shù)的圖象經(jīng)過△AOB的三個(gè)頂點(diǎn),其中A(﹣1,m),B(n,n)
(1)求A、B的坐標(biāo);
(2)在坐標(biāo)平面上找點(diǎn)C,使以A、O、B、C為頂點(diǎn)的四邊形是平行四邊形.
①這樣的點(diǎn)C有幾個(gè)?
②能否將拋物線平移后經(jīng)過A、C兩點(diǎn),若能,求出平移后經(jīng)過A、C兩點(diǎn)的一條拋物線的解析式;若不能,說明理由.

解:(1)∵y=的圖象過點(diǎn)A(﹣1,m)

即m=1
同理:n=
解之,得n=0(舍)或n=2
∴A(﹣1,1),B(2,2)
(2)①由題意可知:這樣的C點(diǎn)有3個(gè)
②能
當(dāng)平移后的拋物線經(jīng)過A、C1兩個(gè)點(diǎn)時(shí),將B點(diǎn)向左平移3個(gè)單位再向下平移1個(gè)單位.使點(diǎn)B移到A點(diǎn),這時(shí)A、C1兩點(diǎn)的拋物線的解析式為y+1=
即y=
另兩條平移后拋物線的解析式分別為:
i)經(jīng)過A、C2兩點(diǎn)的拋物線的解析式為
ii)設(shè)經(jīng)過A、C3兩點(diǎn)的拋物線的解析式為,OC3可看作線段AB向右平移1個(gè)單位再向下平移1個(gè)單位得到∴C3(3,1)
依題意,得解得
∴經(jīng)過A、C3兩點(diǎn)的拋物線的解析式為

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•陜西)如圖①,在矩形ABCD中,將矩形折疊,使B落在邊AD(含端點(diǎn))上,落點(diǎn)記為E,這時(shí)折痕與邊BC或者邊CD(含端點(diǎn))交于F,然后展開鋪平,則以B、E、F為頂點(diǎn)的三角形△BEF稱為矩形ABCD的“折痕三角形”
(1)由“折痕三角形”的定義可知,矩形ABCD的任意一個(gè)“折痕△BEF”是一個(gè)  三角形
(2)如圖②、在矩形ABCD中,AB=2,BC=4,,當(dāng)它的“折痕△BEF”的頂點(diǎn)E位于AD的中點(diǎn)時(shí),畫出這個(gè)“折痕△BEF”,并求出點(diǎn)F的坐標(biāo);
(3)如圖③,在矩形ABCD中,AB=2,BC=4,該矩形是否存在面積最大的“折痕△BEF”?若存在,說明理由,并求出此時(shí)點(diǎn)E的坐標(biāo)?若不存在,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•陜西)如圖,AC∥BD,AE平分∠BAC交BD于點(diǎn)E,若∠1=64°,則∠2=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•陜西)如圖,在?ABCD中,E、F分別是AD、CD邊上的點(diǎn),連接BE、AF,他們相交于G,延長BE交CD的延長線于點(diǎn)H,則圖中的相似三角形共有(  )

A、2對         B、3對
C、4對         D、5對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(陜西卷)數(shù)學(xué)解析版 題型:解答題

(2011•陜西)如圖①,在矩形ABCD中,將矩形折疊,使B落在邊AD(含端點(diǎn))上,落點(diǎn)記為E,這時(shí)折痕與邊BC或者邊CD(含端點(diǎn))交于F,然后展開鋪平,則以B、E、F為頂點(diǎn)的三角形△BEF稱為矩形ABCD的“折痕三角形”
(1)由“折痕三角形”的定義可知,矩形ABCD的任意一個(gè)“折痕△BEF”是一個(gè)  三角形
(2)如圖②、在矩形ABCD中,AB=2,BC=4,,當(dāng)它的“折痕△BEF”的頂點(diǎn)E位于AD的中點(diǎn)時(shí),畫出這個(gè)“折痕△BEF”,并求出點(diǎn)F的坐標(biāo);
(3)如圖③,在矩形ABCD中,AB=2,BC=4,該矩形是否存在面積最大的“折痕△BEF”?若存在,說明理由,并求出此時(shí)點(diǎn)E的坐標(biāo)?若不存在,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(陜西卷)數(shù)學(xué)解析版 題型:解答題

(2011•陜西)如圖,在△ABC中,∠B=60°,⊙O是△ABC外接圓,過點(diǎn)A作⊙O的切線,交CO的延長線于P點(diǎn),CP交⊙O于D
(1)求證:AP=AC;
(2)若AC=3,求PC的長.

查看答案和解析>>

同步練習(xí)冊答案