已知△ABC∽△A′B′C′,△ABC、△A′B′C′的面積分別為5和20,那么
ABAB
=
 
分析:根據(jù)相似三角形的性質(zhì)可知,相似三角形的面積之比等于相似比的平方,所以利用條件求出兩三角形的面積之比,開(kāi)方即可得到相似比,即為對(duì)應(yīng)邊之比.
解答:解:由△ABC∽△A′B′C′,得到
S△ABC
S△A′B′C′
=
5
20
=
1
4
,
根據(jù)相似三角形的性質(zhì)得到
AB
AB
=
1
2

故答案為:
1
2
點(diǎn)評(píng):此題考查學(xué)生掌握相似三角形的面積之比等于相似比的平方,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

1、已知△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,若a、b是關(guān)于x的一元二次方程x2-(c+4)x+4c+8=0的兩個(gè)根,判斷△ABC的形狀
直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知ABC的三邊滿足a2+b2+c2-ab-bc-ac=0,則這個(gè)三角形的形狀是( 。
A、直角三角形B、等腰三角形C、等腰直角三角形D、等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知ABC中,AD為BC邊上的中線,且AB=4cm,AC=3cm,則AD的取值范圍是( 。
A、3<AD<4
B、1<AD<7
C、
1
2
<AD<
7
2
D、
1
3
<AD<
7
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,cosA=
1
2
,tgB=1,則△ABC的形狀是( 。
A、銳角三角形
B、直角三角形
C、鈍角三角形
D、等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC,∠B的平分線交邊AC于P,∠A的平分線交邊BC于Q,如果過(guò)點(diǎn)P、Q、C的圓也過(guò)△ABC的內(nèi)心R,且PQ=1,則PR的長(zhǎng)等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案