精英家教網 > 初中數學 > 題目詳情

【題目】如圖,⊙O的半徑是4,圓周角∠C=60°,點E時直徑AB延長線上一點,且∠DEB=30°,則圖中陰影部分的面積為

【答案】8
【解析】解:連接OD,

∵∠C=60°,

∴∠AOD=2∠C=120°,

∴∠DOB=60°,

∵∠DEB=30°,

∴∠ODE=90°,

∵OD=4,

∴OE=2OD=8,DE= OD=4 ,

∴陰影部分的面積是S=S△ODE﹣S扇形DOB= =8 ,

所以答案是:8

【考點精析】解答此題的關鍵在于理解圓周角定理的相關知識,掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半,以及對扇形面積計算公式的理解,了解在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,以AB為直徑作⊙O,交BC于點D,交CA的延長線于點E,連接AD、DE.
(1)求證:D是BC的中點;
(2)若DE=3,BD﹣AD=2,求⊙O的半徑;
(3)在(2)的條件下,求弦AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A+D=α,∠ABC的平分線與∠BCD的平分線交于點P,則∠P等于________度(用含有α的式子表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知四邊形ABCD是平行四邊形(如圖),把ABD沿對角線BD翻折180°得到AˊBD.

1利用尺規(guī)作出AˊBD.(要求保留作圖痕跡,不寫作法);

2D AˊBC交于點E,求證:BAˊE≌△DCE.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=﹣x﹣4與拋物線y=ax2+bx+c相交于A,B兩點,其中A,B兩點的橫坐標分別為﹣1和﹣4,且拋物線過原點.

(1)求拋物線的解析式;
(2)在坐標軸上是否存在點C,使△ABC為等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;
(3)若點P是線段AB上不與A,B重合的動點,過點P作PE∥OA,與拋物線第三象限的部分交于一點E,過點E作EG⊥x軸于點G,交AB于點F,若S△BGF=3S△EFP , 求 的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,射線AM⊥AB,點P在AM上,連接OP交半圓O于點D,PC切半圓O于點C,連接BC,OC.
(1)求證:△OAP≌△OCP;
(2)若半圓O的半徑等于2,填空: ①當AP=時,四邊形OAPC是正方形;
②當AP=時,四邊形BODC是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在5×5的正方形網格中,每個小正方形的邊長都是1,在所給網格中按下列要求畫出圖形:

1)(I)已知點A在格點(即小正方形的頂點)上,畫一條線段AB,長度為,且點B在格點上; II)以上題中所畫線段AB為一邊,另外兩條邊長分別是3,2,畫一個三角形ABC,使點C在格點上(只需畫出符合條件的一個三角形);

2)所畫的三角形ABCAB邊上高線長.(直接寫出答案)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中, ,垂足為,點上, ,垂足為.

1平行嗎?為什么?

(2)如果,且,求的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,DBC邊上的一點,EAD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF

1BDCD有什么數量關系,并說明理由;

2)當△ABC滿足什么條件時,四邊形AFBD是矩形?并說明理由.

查看答案和解析>>

同步練習冊答案