【題目】如圖,以等邊的邊為直徑畫半圓,分別交邊,于點,,是半圓的切線,交于點,若的長為1,則的面積為( )
A. B. C. D.
【答案】A
【解析】
連接OD,由DF為圓的切線,利用切線的性質(zhì)得到OD垂直于DF,根據(jù)三角形ABC為等邊三角形,利用等邊三角形的性質(zhì)得到三條邊相等,三內(nèi)角相等,都為60°,由OD=OC,得到三角形OCD為等邊三角形,進而得到OD平行與AB,由O為BC的中點,得到D為AC的中點,在直角三角形ADF中,利用30°所對的直角邊等于斜邊的一半求出AD的長,進而求出AC的長,即為AB的長,由AB-AF求出FB的長,在直角三角形FBG中,利用30°所對的直角邊等于斜邊的一半求出BG的長,再利用三角函數(shù)即可求出FG的長.最后用三角形的面積公式即可.
如圖,連接OD,過點F作FG⊥BC,
∵DF為圓O的切線,
∴OD⊥DF,
∵△ABC為等邊三角形,
∴AB=BC=AC,∠A=∠B=∠ACB=60°,
∵OD=OC,
∴△OCD為等邊三角形,
∴∠CDO=∠A=60°,∠ABC=∠DOC=60°,
∴OD∥AB,
∴DF⊥AB,
在Rt△AFD中,∠ADF=30°,AF=1,
∴AD=2AF=2,
∴AC=4,即:BC=AC=4,
∴FB=AB-AF=4-1=3,
在Rt△BFG中,∠BFG=30°,
∴cos∠BFG=,
∴FG=BF=.
∴S△FBC=BC×FG=×4×=3,
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E.若BF=6,AB=5,則AE的長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線分別與x軸、y軸交于點和點B,直線分別與x軸、y軸交于點C和點D,兩直線交于第一象限內(nèi)的點E,并且點D為的中點。
(1)求直線的解析式;
(2)過點D作軸,交直線于點F,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)學(xué)興趣小組的小穎想測量教學(xué)樓前的一棵樹的樹高,下午課外活動時她測得一根長為1m的竹竿的影長是0.5m,但當她馬上測量樹高時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上(如圖),她先測得留在墻壁上的影高為1m,又測得地面的影長為1.5m,請你幫她算一下,樹高為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某處有一座信號塔AB,山坡BC的坡度為1:,現(xiàn)為了測量塔高AB,測量人員選擇山坡C處為一測量點,測得∠DCA=45°,然后他順山坡向上行走100米到達E處,再測得∠FEA=60°.
(1)求出山坡BC的坡角∠BCD的大;
(2)求塔頂A到CD的鉛直高度AD.(結(jié)果保留整數(shù):≈1.73,≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李寧準備完成題目;解二元一次方程組,發(fā)現(xiàn)系數(shù)“□”印刷不清楚.
(1)他把“□”猜成3,請你解二元一次方程組;
(2)張老師說:“你猜錯了”,我看到該題標準答案的結(jié)果x、y是一對相反數(shù),通過計算說明原題中“□”是幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=2,AC=2,點D是BC的中點,點E是邊AB上一動點,沿DE所在直線把△BDE翻折到△B′DE的位置,B′D交AB于點F.若△AB′F為直角三角形,則AE的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同樣條件下對某種小麥種子進行發(fā)芽試驗,統(tǒng)計發(fā)芽種子數(shù),獲得如下頻數(shù)表.
試驗種子n(粒) | 1 | 5 | 50 | 100 | 200 | 500 | 1000 | 2000 | 3000 |
發(fā)芽頻數(shù)m | 1 | 4 | 45 | 92 | 188 | 476 | 951 | 1900 | 2850 |
發(fā)芽頻率 | 0 | 0.80 | 0.90 | 0.92 | 0.94 | 0.952 | 0.951 | a | b |
(1)計算表中a,b的值;
(2)估計該麥種的發(fā)芽概率;
(3)如果該麥種發(fā)芽后,只有87%的麥芽可以成活,現(xiàn)有100kg麥種,則有多少千克的麥種可以成活為秧苗?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com