19.已知$\sqrt{a-2}+{(b+1)^2}=0$,則ab=(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 先根據(jù)非負(fù)數(shù)的性質(zhì)求出a,b的值,進(jìn)而可得出結(jié)論.

解答 解:∵$\sqrt{a-2}+{(b+1)^2}=0$,
∴a-2=0,b+1=0,解得a=2,b=-1,
∴ab=2-1=$\frac{1}{2}$.
故選C.

點(diǎn)評(píng) 本題考查的是非負(fù)數(shù)的性質(zhì),熟知算術(shù)平方根具有非負(fù)性是解答此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

9.反比例函數(shù)$y=\frac{k}{x}$的圖象經(jīng)過(guò)點(diǎn)(-2,3),則函數(shù)的解析式為y=-$\frac{6}{x}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若4x-1與7-2x的值互為相反數(shù),則x=-3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.?dāng)?shù)學(xué)課本上一次函數(shù)新課后有這樣一題設(shè)計(jì)題,為節(jié)約用水,某市居民生活用水按階梯式水價(jià)計(jì)費(fèi),將居民的每月生活用水水價(jià),分為三個(gè)等級(jí):一級(jí)20立方米及以下,二級(jí)21~30立方米(含30立方米),三級(jí)31立方米及以上,以下是王聰家水費(fèi)發(fā)票的部分信息(注:居民生活用水水價(jià)=居民生活自來(lái)水費(fèi)+居民生活污水處理費(fèi))
自來(lái)水總公司水費(fèi)專用發(fā)票發(fā)票聯(lián)  (計(jì)費(fèi)時(shí)間:2012-01-01至2012-01-31)
上期抄見(jiàn)數(shù)本期抄見(jiàn)數(shù)加原表用水量(噸)本期用水量(噸)
88992435污水處理費(fèi)
用水量(噸)單價(jià)元(/噸)金額(元)用水量(噸)單價(jià)元(/噸)金額(元)
階梯一201.3026.00200.5010.00
階梯二1019.00100.505.00
階梯三515.0050.502.50
本期實(shí)付金額(大寫(xiě))柒拾柒元伍角整  77.50(元)
(1)從如表信息可知,水費(fèi)的收費(fèi)標(biāo)準(zhǔn)(含污水處理費(fèi))是:每月用水21~30噸(含30噸)為2.4元/噸,31m及以上為3.5元/噸.
(2)若王聰家2月份的月用水量為x(m)(20<x≤30),應(yīng)付水費(fèi)為y元,求y關(guān)于x的函數(shù)表達(dá)式?
(3)已知2012年2月份王聰家所繳的水費(fèi)為55.20元,請(qǐng)你計(jì)算王聰家該月份的用水量為多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.計(jì)算:$\sqrt{12}$+$\sqrt{\frac{1}{27}}$-$\sqrt{\frac{1}{3}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.把下列各題因式分解.
(1)4a3b2-10ab3c
(2)4x2-y2
(3)x3-6x2+9x
(4)x2(x-y)+y2(y-x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列命題是真命題的是( 。
(1)對(duì)頂角相等;
(2)如果兩個(gè)角的和是180度,那么這兩個(gè)角互補(bǔ).
(3)同位角相等;
(4)三角形的外角和為180度.
A.(1)(2)B.(3)(4)C.(2)(4)D.(1)(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.定義:對(duì)于拋物線y=ax2+bx+c(a、b、c是常數(shù),a≠0),若b2=ac,則稱該拋物線為黃金拋物線.例如:y=2x2-2x+2是黃金拋物線.
(1)將y=2x2-2x+2先向下平移3個(gè)單位,再向左平移2個(gè)單位,則平移后的新拋物線的解析式為y=2x2+2x-1;
(2)請(qǐng)?jiān)賹?xiě)出一個(gè)與上例不同的黃金拋物線的解析式y(tǒng)=2x2+2x+2;
(3)若拋物線y=ax2+bx+c(a、b、c是常數(shù),a≠0)是黃金拋物線,請(qǐng)?zhí)骄吭擖S金拋物線與x軸的公共點(diǎn)個(gè)數(shù)的情況(要求說(shuō)明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖:已知⊙P的半徑為1,圓心P在拋物線y=x2-1上運(yùn)動(dòng),當(dāng)⊙P與x軸相切時(shí),圓心P的坐標(biāo)為(0,-1)、($\sqrt{2}$,1)或(-$\sqrt{2}$,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案