解:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°,
∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°
∴∠ABD=∠CAE,
∵AB=AC,
在△ABD和△CAE中,
∵
,
∴△ABD≌△CAE(AAS),
∴BD=AE,AD=CE,
∵AE=AD+DE,
∴BD=DE+CE;
(2)BD=DE-CE;
∵∠BAC=90°,BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°,
∵AB=AC,
在△ABD和△CAE中,
∵
,
∴△ABD≌△CAE(AAS),
∴BD=AE,AD=CE,
∴AD+AE=BD+CE,
∵DE=BD+CE,
∴BD=DE-CE.
分析:根據(jù)已知利用AAS判定△ABD≌△CAE從而得到BD=AE,AD=CE,因為AE=AD+DE,所以BD=DE+CE;
根據(jù)已知利用AAS判定△ABD≌△CAE從而得到BD=AE,AD=CE,因為AD+AE=BD+CE,所以BD=DE-CE.
點評:此題主要考查學生對全等三角形的判定方法的理解及運用,常用的判定方法有SSS,SAS,AAS等.這種類型的題目經(jīng)常考到,要注意掌握.