【題目】如圖,已知AB=AC=AD,∠CAD=60°,分別連接BC、BD,作AE平分∠BAC交BD于點(diǎn)E,若BE=4,ED=8,則DF=_____.
【答案】6
【解析】
連接CE、CD,取DE的中點(diǎn)M,連接CM.首先證明△ECM,△ACD度數(shù)等邊三角形,再證明△CEF∽△DEC即可解決問題.
解:連接CE、CD,取DE的中點(diǎn)M,連接CM.
∵AB=AC,∠EAB=∠EAC,AE=AE,
∴△EAB≌△EAC,
∴BE=EC=4,∠ABE=∠ACE,
∵AB=AD,
∴∠ABE=∠ADB,
∴∠ACE=∠ADF,
∵∠DFA=∠CFE,
∴∠DAF=∠CEF=60°,
∵EM=ED=4,
∴CE=EM,
∴△EMC是等邊三角形,
∴CM=EM=DM,∠EMC=60°,
∵∠EMC=∠MCD+∠MDC,
∴∠MCD=∠MDC=30°,
∵AC=AD,∠CAD=60°,
∴△ACD是等邊三角形,
∴∠ADC=60°,
∴∠ADB=∠ABD=∠ACE=∠CDB=30°,
∵∠CEF=∠CED,
∴△CEF∽△DEC,
∴EC2=EFED,
∴16=8EF,
∴EF=2,DF=DE﹣EF=6.
故答案為6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年10月31日,在廣州舉行的世界城市日全球主場活動(dòng)開幕式上,住建部公布許昌成為“國家生態(tài)園林城市”在2018年植樹節(jié)到來之際,許昌某中學(xué)購買了甲、乙兩種樹木用于綠化校園.若購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元.
(1)求甲種樹和乙種樹的單價(jià);
(2)按學(xué)校規(guī)劃,準(zhǔn)備購買甲、乙兩種樹共200棵,且甲種樹的數(shù)量不少于乙種樹的數(shù)量的,請?jiān)O(shè)計(jì)出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=4-x與兩坐標(biāo)軸分別相交于A、B點(diǎn),點(diǎn)M是線段AB上任意一點(diǎn)(A、B兩點(diǎn)除外),過M分別作MC⊥OA于點(diǎn)C,MD⊥OB于點(diǎn)D。
(1)當(dāng)點(diǎn)M在AB上運(yùn)動(dòng)時(shí),四邊形OCMD的周長為________;
(2)當(dāng)四邊形OCMD為正方形時(shí),將正方形OCMD沿著x軸的正方向移動(dòng),設(shè)平移的距離為a (0<a≤4),在平移過程中:
①當(dāng)平移距離a=1時(shí), 正方形OCMD與△AOB重疊部分的面積為________;
②當(dāng)平移距離a是多少時(shí),正方形OCMD的面積被直線AB分成l:3兩個(gè)部分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,以BC邊為直徑作⊙O交AB邊于點(diǎn)D,過點(diǎn)D作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若⊙O的半徑等于 ,cosB= ,求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年學(xué)校舉行足球聯(lián)賽,共賽17輪(即每隊(duì)均需參賽17場),記分辦法是:勝1場得3分,平1場得1分,負(fù)1場得0分.在這次足球比賽中,小虎足球隊(duì)得16分,且踢平場數(shù)是所負(fù)場數(shù)的整數(shù)倍,則小虎足球隊(duì)所負(fù)場數(shù)的情況有( )
A.2種B.3種C.4種D.5種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,P為AD邊上一點(diǎn),沿直線BP將△ABP翻折至△EBP(點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)E),PE與CD相交于點(diǎn)O,且OE=OD.
(1)求證:PE=DH;
(2)若AB=10,BC=8,求DP的長.
【答案】(1)見解析;(2).
【解析】試題分析:(1) 先證明△DOP≌△EOH,再利用等量代換得到PE=DH.
(2) 設(shè)DP=x, Rt△BCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.
試題解析:
(1)解:證明:∵OD=OE,∠D=∠E=90°,∠DOP=∠EOH,
∴△DOP≌△EOH,
∴OP=OH,
∴PO+OE=OH+OD,
∴PE=DH.
(2)解:設(shè)DP=x,則EH=x,BH=10﹣x,
CH=CD﹣DH=CD﹣PE=10﹣(8﹣x)=2+x,
∴在Rt△BCH中,BC2+CH2=BH2
(2+x)2+82=(10﹣x)2,
∴x=,
∴DP=.
【題型】解答題
【結(jié)束】
25
【題目】某文教店老板到批發(fā)市場選購A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進(jìn)價(jià)比B品牌每套套裝進(jìn)價(jià)多2.5元,已知用200元購進(jìn)A種套裝的數(shù)量是用75元購進(jìn)B種套裝數(shù)量的2倍.
(1)求A,B兩種品牌套裝每套進(jìn)價(jià)分別為多少元?
(2)若A品牌套裝每套售價(jià)為13元,B品牌套裝每套售價(jià)為9.5元,店老板決定,購進(jìn)B品牌的數(shù)量比購進(jìn)A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進(jìn)A品牌工具套裝多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2﹣2x+3與x軸交于A、B兩點(diǎn),將這條拋物線的頂點(diǎn)記為C,連接AC、BC,則tan∠CAB的值為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD的對角線相交于點(diǎn)O,AC= ,CD=1,
(1)尺規(guī)作圖:作∠ABC的平分線交AD于點(diǎn)E,連結(jié)CE;
(2)判斷線段BE與CE的關(guān)系,并證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班40名學(xué)生的某次數(shù)學(xué)測驗(yàn)成績統(tǒng)計(jì)表如下:
(1)若這個(gè)班的數(shù)學(xué)平均成績是69分,求x和y的值;
(2)設(shè)此班40名學(xué)生成績的眾數(shù)為a分,中位數(shù)為b分,求(a-b)2的值;
(3)根據(jù)以上信息,你認(rèn)為這個(gè)班的數(shù)學(xué)水平怎么樣?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com