分析 (1)先證得△ADB≌△CDB求得∠BCD=∠BAD,從而得到∠ADF=∠BAD,所以AB∥FD,因?yàn)锽D⊥AC,AF⊥AC,所以AF∥BD,即可證得結(jié)論.
(2)由平行四邊形的性質(zhì)得出BD=AF=14,AB=DF=13,設(shè)BE=x,則DE=14-x,由勾股定理得出方程,解方程得出BE,再由勾股定理求出AE,即可得出AC的長(zhǎng).
解答 (1)證明:∵BD垂直平分AC,
∴AB=BC,AD=DC,
在△ADB與△CDB中,
{AB=BCAD=DCDB=DB,
∴△ADB≌△CDB(SSS)
∴∠BCD=∠BAD,
∵∠BCD=∠ADF,
∴∠BAD=∠ADF,
∴AB∥FD,
∵BD⊥AC,AF⊥AC,
∴AF∥BD,
∴四邊形ABDF是平行四邊形,
(2)解:∵四邊形ABDF是平行四邊形,
∴BD=AF=14,AB=DF=13,
設(shè)BE=x,則DE=14-x,由勾股定理得:
∴AB2-BE2=AD2-DE2,
即132-x2=152-(14-x)2
解得:x=5,
即BE=5,
∴AE=√AB2−BE2=√132−52=12,
∴AC=2AE=24.
點(diǎn)評(píng) 本題考查了平行四邊形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理;本題有一定難度,特別是(2)中,運(yùn)用勾股定理得出方程求出BE是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 西太平洋 | B. | 距電白500海里 | C. | 北緯28°,東經(jīng)36° | D. | 湛江附近 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
x | … | -13 | 0 | 13 | 23 | 1 | 43 | … |
y | … | 53 | 89 | 13 | 0 | -19 | 0 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 5個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com