【題目】如圖,在Rt△ABC中,∠C=90°,BC=2AC,D,E,F分別為BC,AC,AB邊上的點,BF=3AF,∠DFE=90°,若△BDF與△FEA的面積比為3:2,則△CDE與△DEF的面積比為_____.
【答案】5:12
【解析】
過點D、E分別作AB的垂線DG、EH,由BF=3AF及△BDF與△FEA的面積比為3:2,可求得EH和DG的數量關系,設FG=x,DG=a,則BG=2a,AH=a,EH=2a,先證明△DFG∽△FEH,用x和a表示出FH,再根據BF=3AF,列出方程,用含a的式子表示出x,然后用含a的式子表示出相關線段,進而表示出△CDE與△DEF的面積,兩者相比即可得解.
解:如圖,過點D、E分別作AB的垂線DG、EH交AB于點G,H
∵BF=3AF,△BDF與△FEA的面積比為3:2,
∴
∴EH=2DG
∵∠C=90°,BC=2AC
∴tan∠B=
∴BG=2DG
設FG=x,DG=a,則BG=2a,AH=a,EH=2a
∴AE==a
∵∠DFE=90°,
∴∠DFG+∠EFH=90°
又∵∠FEH+∠EFH=90°
∴∠DFG=∠FEH
又∵∠FGD=∠EHF=90°
∴△DFG∽△FEH
∴=
∴=
∴FH=
∵BF=3AF
∴2a+x=3(a+)
整理得:x2﹣ax﹣6a2=0
解得:x=3a或x=﹣2a(舍)
∴FH=,BA=4AF=4(a+)=
∵∠C=90°,BC=2AC
∴AC:BC:AB=1:2:
∴AC==,BC=2AC=
由勾股定理得:DF===a,
EF===
∴S△DEF=DFEF=×a×=
∵AC=,BC=,AE=a
CE=AC﹣AE=,CD=CB﹣BD=﹣=
∴S△CDE=CECD=××=
∴S△CDE:S△DEF=:=5:12
故答案為:5:12.
科目:初中數學 來源: 題型:
【題目】如圖,已知在平面直角坐標系xOy中,O為坐標原點,拋物線y=﹣x2+bx+c經過原點,與x軸的另一個交點為A(﹣6,0),點C是拋物線的頂點,且⊙C與y軸相切,點P為⊙C上一動點.若點D為PA的中點,連結OD,則OD的最大值是( )
A.B.C.2D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】類比、轉化、從特殊到一般等思想方法,在數學學習和研究中經常用到,如下是一個案例,請補充完整.
原題:如圖1,在平行四邊形ABCD中,點E是BC的中點,點F是線段AE上一點,BF的延長線交射線CD于點G.若,求的值.
(1)嘗試探究
在圖1中,過點E作EH∥AB交BG于點H,則AB和EH的數量關系是 ,CG和EH的數量關系是 ,的值是 .
(2)類比延伸
如圖2,在原題的條件下,若求的值(用含有m的代數式表示).
(3)拓展遷移
如圖3,梯形ABCD中,DC∥AB,點E是BC的延長線上的一點,AE和BD相交于點F. 若,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點的坐標為,直線與軸,軸分別交于點,,當軸上的動點到直線的距離與到點的距離之和最小時,則點的坐標是__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,
(1)求證:無論k取什么實數值,該方程總有兩個不相等的實數根?
(2)當Rt△ABC的斜邊a=,且兩條直角邊的長b和c恰好是這個方程的兩個根時,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=﹣x2+bx+c的圖象經過點A(2,0),B(5,0),過點D(0,)作y軸的垂線DP交圖象于E、F.
(1)求b、c的值和拋物線的頂點M的坐標;
(2)求證:四邊形OAFE是平行四邊形;
(3)將拋物線向左平移的過程中,拋物線的頂點記為M′,直線DP與拋物線的左交點為E′,連接OM′,OE′,當OE′+OM′的值最小時求直線OE′的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點D為AB邊上一點,且AD=1,點P從點C出發(fā),沿射線CA以每秒1個單位長度的速度運動,以CP、DP為鄰邊作CPDE.設CPDE和△ABC重疊部分圖形的面積為S(平方單位),點P的運動時間為t(秒)(t>0)
(1)連結CD,求CD的長;
(2)當CPDE為菱形時,求t的值;
(3)求S與t之間的函數關系式;
(4)將線段CD沿直線CE翻折得到線段C′D′.當點D′落在△ABC的邊上時,直接寫出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把兩塊同樣大小的含角的三角板的直角重合并按圖1方式放置,點是兩塊三角板的邊與的交點,將三角板繞點按順時針方向旋轉到圖2的位置,若,則點所走過的路程是_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知⊙O的半徑為5,弦AB,CD所對的圓心角分別是∠AOB,∠COD,下列說法正確的是( )①若∠AOB=∠COD,則CD=AB;②若CD=AB,則CD,AB所對的弧相等;③若CD=AB,則點O到CD,AB的距離相等;④若∠AOB+∠COD=180°,且CD=6,則AB=8.
A.①②③④B.①③④C.①②④D.③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com