【題目】如圖,在△ABC 中,∠C=90°,BC=3,D,E分別在AB、AC上,將△ADE沿DE翻折后,點A落在點A′處,若A′為CE的中點,則折痕DE的長為(
A.
B.3
C.2
D.1

【答案】D
【解析】解:∵△A′DE△ADE翻折而成, ∴AE=A′E,
∵A′為CE的中點,
∴AE=A′E= CE,
∴AE= AC, = ,
∵∠C=90°,DE⊥AC,
∴DE∥BC,
∴△ADE∽△ABC,
= = , = ,
解得DE=1.
故選D.
【考點精析】關(guān)于本題考查的翻折變換(折疊問題),需要了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足 ,(n∈N+). (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè) ,數(shù)列{bn}的前n項和Sn , 求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC在平面直角坐標系中的位置如圖所示.

(1)作△ABC關(guān)于原點O成中心對稱的△A1B1C1
(2)請寫出點B關(guān)于y軸對稱的點B2的坐標 . 若將點B2向下平移h單位,使其落在△A1B1C1內(nèi)部(不包括邊界),直接寫出h的值(寫出滿足的一個即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,將一個邊長為2的正方形ABCD和一個長為2、寬為1的矩形CEFD拼在一起,構(gòu)成一個大的矩形ABEF,現(xiàn)將小矩形CEFD繞點C順時針旋轉(zhuǎn),得到矩形CE′F′D′,旋轉(zhuǎn)角為α.

(1)當點D′恰好落在EF邊上時,求旋轉(zhuǎn)角α的值;
(2)如圖2,G為BC的中點,且0°<α<90°,求證:GD′=E′D;

(3)小矩形CEFD繞點C順時針旋轉(zhuǎn)一周的過程中,△DCD′與△CBD′能否全等?若能,直接寫出旋轉(zhuǎn)角α的值;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊△ABO在平面直角坐標系中,點A(4 ,0),函數(shù)y= (x>0,k為常數(shù))的圖象經(jīng)過AB的中點D,交OB于E.
(1)求k的值;
(2)若第一象限的雙曲線y= 與△BDE沒有交點,請直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)如果AB=4,AE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線.

(1)求證:△ADE≌△CBF
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標系內(nèi)的圖象大致為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校組建了書法、音樂、美術(shù)、舞蹈、演講五個社團,全校1600名學(xué)生每人都參加且只參加了其中一個社團的活動.校團委從這1600名學(xué)生中隨機選取部分學(xué)生進行了參加活動情況的調(diào)查,并將調(diào)查結(jié)果制成了如圖不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖完成下列問題:

參加本次調(diào)查有名學(xué)生,根據(jù)調(diào)查數(shù)據(jù)分析,全校約有名學(xué)生參加了音樂社團;請你補全條形統(tǒng)計圖.

查看答案和解析>>

同步練習(xí)冊答案