【題目】已知拋物線y=ax2+bx+c(a≠0)在平面直角坐標系中的位置如圖所示,則下列結(jié)論中,正確的是( 。
A. ac<0 B. a+b+c<0 C. b2﹣4ac<0 D. b=8a
科目:初中數(shù)學 來源: 題型:
【題目】某電器商場銷售A,B兩種型號計算器,兩種計算器的進貨價格分別為每臺30元,40元. 商場銷售5臺A型號和1臺B型號計算器,可獲利潤76元;銷售6臺A型號和3臺B型號計算器,可獲利120元.
(1)求商場銷售A,B兩種型號計算器的銷售價格分別是多少元?(利潤=銷售價格﹣進貨價格)
(2)商場準備用不多于2500元的資金購進A,B兩種型號計算器共70臺,問最少需要購進A型號的計算器多少臺?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:我們學習了整式的乘法,兩個多項式相乘,我們可以運用法則,將其展開,例如:,而將等號的左右兩邊互換,我們得到了,等號的左邊是一個多項式,而右邊是幾個整式相乘的形式,我們規(guī)定將一個多項式寫成幾個整式相乘的形式,這種運算稱之為“因式分解”
問題提出:
如何將進行因式分解呢?
問題探究:
數(shù)形結(jié)合是解決數(shù)學問題的一種重要的思想方法,借助這種方法可將抽象的數(shù)學知識變得直觀起來并且具有可操作性,從而可以幫助我們快速解題.初中數(shù)學里的一些代數(shù)公式,很多都可以通過表示幾何圖形面積的方法進行直觀推導(dǎo)和解釋
例如:我們可以通過表示幾何圖形面積的方法來快速的對多項式進行因式分解.
如圖所示邊長為的大正方形是由1個邊長為的正方形,2個邊長為的長方形,1個邊長為的正方形,組成,我們可以用兩種方法表示大正方形的面積,這個圖形的面積可以表示成:或
∴
我們將等號左邊的多項式寫成了右邊兩個整式相乘的形式,從而成功的對多項式進行了因式分解
請你類比上述方法,利用圖形的幾何意義對多項式進行因式分解(要求自己構(gòu)圖并寫出推證過程)
問題拓展:
如何利用圖形幾何意義的方法推導(dǎo):?如圖,表示1個的正方形,即,表示1個的正方形,與恰好可以拼成1個的正方形,因此:、、就可以表示2個的正方形,即,而、、、恰好可以拼成一個的大正方形.由此可得:
嘗試解決:
請你類比上述推導(dǎo)過程,利用圖形幾何意義方法推導(dǎo)出的值.
(要求自己構(gòu)造圖形并寫出推證過程).
解:
歸納猜想:_________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小麗購買學習用品的收據(jù)如表,因污損導(dǎo)致部分數(shù)據(jù)無法識別,根據(jù)下表,解決下列問題:
(1)小麗買了自動鉛筆、記號筆各幾支?
(2)若小麗再次購買軟皮筆記本和自動鉛筆兩種文具,共花費15元,則有哪幾種不同的購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,,,點E在邊AB上,點F是邊BC上不與點B、C重合的一個動點,把沿EF折疊,點B落在點處.若,當是以為腰的等腰三角形時,線段的長為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題背景)
如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,點E、F分別是邊BC、CD上的點,且∠EAF=60°,試探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.
小王同學探究此問題的方法是:延長FD到點G,使GD=BE,連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 .
(探索延伸)
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,點E、F分別是邊BC、CD上的點,且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說明理由.
(學以致用)
如圖3,在四邊形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是邊AB上一點,當∠DCE=45°,BE=2時,則DE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,三角形ABO中,A(﹣2,﹣3)、B(2,﹣1),三角形A′B′O′是三角形ABO平移之后得到的圖形,并且O的對應(yīng)點O′的坐標為(4,3).
(1)求三角形ABO的面積;
(2)作出三角形ABO平移之后的圖形三角形A′B′O′,并寫出A′、B′兩點的坐標分別為A′ 、B′ ;
(3)P(x,y)為三角形ABO中任意一點,則平移后對應(yīng)點P′的坐標為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問題:
例題:解一元二次不等式.
解∵,∴可化為.
由有理數(shù)的乘法法則:兩數(shù)相乘,同號得正,得:①②
解不等式組①,得,解不等式組②,得
∴的解集為或.
即一元二次不等式的解集為或.
(1)一元二次不等式的解集為____________;
(2)試解一元二次不等式;
(3)試解不等式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小華是花店的一名花藝師,她每天都要為花店制作普通花束和精致花束,她每月工作20天,每天工作8小時,她的工資由基本工資和提成工資兩部分構(gòu)成,每月的基本工資為l800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作兩種花束的數(shù)量與所用時間的關(guān)系見下表:
制作普通花束(束) | 制作精致花束(束) | 所用時間(分鐘) |
10 | 25 | 600 |
15 | 30 | 750 |
請根據(jù)以上信息,解答下列問題:
(1)小華每制作一束普通花束和每制作一束精致花束分別需要多少分鐘?
(2)2019年11月花店老板要求小華本月制作普通花束的總時間不少于3000分鐘且不超過5000分鐘,則小華該月收入最多是多少元?此時小華本月制作普通花束和制作精致花束分別是多少束?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com