【題目】如圖,長(zhǎng)方形OBCDOB邊在x軸上,ODy軸上,把OBC沿OC折疊得到OCE,OECD交于點(diǎn)F.

(1)求證:OFCF;

(2)若OD=4,OB=8,寫出OE所在直線的解析式.

【答案】1)證明見解析;(2y=x.

【解析】

(1)根據(jù)平行的性質(zhì)和軸對(duì)稱的性質(zhì),可得∠BOC=FOC=FCO,即可證得;
(2)可設(shè)FC=x=OF,則DF=8-x,則在直角△ODF中,根據(jù)勾股定理,可求出x,即可得出DF的長(zhǎng),從而可求出F點(diǎn)的坐標(biāo),再用待定系數(shù)法求出OE所在直線的解析式.

1)證明:∵四邊形OBCD是長(zhǎng)方形 ∴∠BOC=OCD

OBC折疊成OCE ∴∠BOC=EOC

∴∠EOC=OCD OF=CF

2)設(shè)FC=x,(8-x)2+42=x2 解得:x=5, DF=8-5=3, ∴點(diǎn)F的坐標(biāo)為;(3,4)

設(shè)OE所在直線方程為y=kx,

把(34)代入y=kx,得k=,

OE所在直線方程為y=x.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料并完成任務(wù):

“最短路徑問題”是數(shù)學(xué)中一類具有挑戰(zhàn)性的問題.其實(shí),數(shù)學(xué)史上也有不少相關(guān)的故事,如下即為其中較為經(jīng)典的一則:古希臘有一位久負(fù)盛名的學(xué)者,名叫海倫.他精通數(shù)學(xué)、物理,聰慧過人.有一天,一位將軍向他請(qǐng)教一個(gè)問題:如圖1,將軍從甲地騎馬出發(fā),要到河邊讓馬飲水,然后再回到乙地的馬棚,為使馬走的路程最短,應(yīng)該讓馬在什么地方飲水?

海倫認(rèn)為以河邊為鏡面,畫出甲地的鏡像點(diǎn)(垂直河邊的等距離點(diǎn)),然后連接乙地和甲地的鏡像點(diǎn),會(huì)跟河邊相交一點(diǎn),這個(gè)點(diǎn)就是馬飲水的地方,馬走的路程最短(兩點(diǎn)之間直線距離最短).

任務(wù):

1)請(qǐng)你幫海倫在圖1的位置完成作圖,并標(biāo)出馬飲水的地點(diǎn)(畫出草圖即可);

2)如圖2,的三個(gè)頂點(diǎn)的坐標(biāo)分別為,.請(qǐng)你在軸上找一點(diǎn),使得最小,并直接寫出點(diǎn)的坐標(biāo)(保留作圖痕跡);

應(yīng)用:

3)如圖3,圓柱形容器高為,底面周長(zhǎng)為,在杯內(nèi)壁離杯底的點(diǎn)處有一滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿處的點(diǎn)處,點(diǎn)的水平距離等于底面直徑,求螞蟻從外壁處到達(dá)內(nèi)壁處的最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(5,0)和點(diǎn)B04).

1求直線AB所對(duì)應(yīng)的函數(shù)表達(dá)式;

2設(shè)直線yx與直線AB相交于點(diǎn)C,求BOC的面積;

3若將直線OC沿x軸向右平移,交y軸于點(diǎn)O當(dāng)AB O為等腰三角形時(shí),直接寫出點(diǎn)O的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,,,,交于點(diǎn),則下列結(jié)論:①;②;③平分;④.其中正確的有____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班男同學(xué)身高情況如下表,則其中數(shù)據(jù)167cm

身高(cm)

170

169

168

167

166

165

164

163

人數(shù)()

1

2

5

8

6

3

3

2

A.是平均數(shù)B.是眾數(shù)但不是中位數(shù).

C.是中位數(shù)但不是眾數(shù)D.是眾數(shù)也是中位數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一枚均勻的正方體骰子,六個(gè)面分別標(biāo)有數(shù)字:1,2,3,4,5,6.如果用小剛拋擲正方體骰子朝上的數(shù)字x,小強(qiáng)拋擲正方體骰子朝上的數(shù)字y來確定點(diǎn)P(x,y),那么他們各拋擲一次所確定的點(diǎn)P落在已知直線y=﹣2x+7圖象上的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在讀數(shù)月活動(dòng)中學(xué)校準(zhǔn)備購(gòu)買一批課外讀物,為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個(gè)類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類)。下圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖。

請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

1)本次調(diào)查中,一共調(diào)查了 名同學(xué);

2)條形統(tǒng)計(jì)圖中;

3)扇形統(tǒng)計(jì)圖中,藝術(shù)類讀數(shù)所在扇形的圓心角是 度;

4)學(xué)校計(jì)劃購(gòu)買課外讀物8000冊(cè),請(qǐng)根據(jù)樣本數(shù)據(jù),估計(jì)學(xué)校購(gòu)買其他類讀數(shù)多少冊(cè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年是中華人民共和國(guó)成立70周年,某校將開展愛我中華,了解歷史為主題的知識(shí)競(jìng)賽,八年級(jí)某老師為了解所任教的甲,乙兩班學(xué)生相關(guān)知識(shí)的掌握情況,對(duì)兩個(gè)班的學(xué)生進(jìn)行了中國(guó)歷史知識(shí)檢測(cè),滿分為100.現(xiàn)從兩個(gè)班分別隨機(jī)抽取了20名學(xué)生的檢測(cè)成績(jī)進(jìn)行整理、描述和分析,下面給出了部分信息:(成績(jī)得分用x表示,共分為五組,A:0≤x80,B:80≤x85,C:85≤x90,D:90≤x95,E:95≤x≤100)

甲班20名學(xué)生的成績(jī)?yōu)?/span>:

82,8596,7391,99,87,918691

87, 94,89, 9696,91100,93,94, 99

乙班20名學(xué)生的成績(jī)?cè)?/span>D組中的數(shù)據(jù)是:91,92,92,9292,93,94

甲,乙兩班抽取的學(xué)生成績(jī)數(shù)據(jù)統(tǒng)計(jì)表:

根據(jù)以上信息,解答下列問題:

(1)請(qǐng)直接寫出上述統(tǒng)計(jì)表中a,b的值:a= b= ;

(2)若甲,乙兩班總?cè)藬?shù)為120名,且都參加了此次知識(shí)檢測(cè),若規(guī)定成績(jī)得分x≥95為優(yōu)秀,請(qǐng)估計(jì)此次檢測(cè)成績(jī)優(yōu)秀的學(xué)生人數(shù)是多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰Rt△ABCBAC=90°,點(diǎn)EAC上(且不與點(diǎn)AC重合.在ABC的外部作等腰Rt△CED,使CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

1求證AEF是等腰直角三角形

2如圖2,CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),連接AE求證AF=AE;

3如圖3,CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn)當(dāng)平行四邊形ABFD為菱形,CEDABC的下方時(shí),AB=2CE=2,求線段AE的長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案