(2002•上海)操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經(jīng)過點B,另一邊與射線DC相交于點Q.
探究:設A、P兩點間的距離為x.
(1)點Q在CD上時,線段PQ與線段PB之間有怎樣的大小關系?試證明你觀察得到的結論(如圖1);
(2)點Q邊CD上時,設四邊形PBCQ的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)的定義域(如圖2);
(3)點P在線段AC上滑動時,△PCQ是否可能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點Q的位置,并求出相應的x的值;如果不可能,試說明理由(如圖3).(圖4、圖5、圖6的形狀、大小相同,圖4供操作、實驗用,圖5和圖6備用).

【答案】分析:(1)過點P作MN∥BC,分別交AB于點M,交CD于點N,可得四邊形AMND和四邊形BCNM都是矩形,△AMP和△CNP都是等腰三角形;根據(jù)等腰三角形的性質(zhì)與角的互余關系進行代換可得△QNP≌△PMB,故PQ=PB.
(2)設AP=x,故AM=MP=NQ=DN=x,由(1)的結論,可得CQ=CD-DQ=1-2×x=1-x;
根據(jù)圖形可得關系S四邊形PBCQ=S△PBC+S△PCQ,代入數(shù)據(jù)可得解析式.
(3)分①當點P與點A重合,與②當點Q在邊DC的延長線上,兩種情況討論,分別討論答案.
解答:解:(1)PQ=PB,
證明:過點P作MN∥BC,分別交AB于點M,交CD于點N,則四邊形AMND和四邊形BCNM都是矩形,
△AMP和△CNP都是等腰三角形(如圖1).
∴NP=NC=MB
∵∠BPQ=90°
∴∠QPN+∠BPM=90°,而∠BPM+∠PBM=90°
∴∠QPN=∠PBM.
又∵∠QNP=∠PMB=90°
∴△QNP≌△PMB(ASA),
∴PQ=PB.

(2)由(1)知△QNP≌△PMB,得NQ=MP.
∵AP=x,
∴AM=MP=NQ=DN=x,BM=PN=CN=1-x,
∴CQ=CD-DQ=1-2×x=1-x
∴S△PBC=BC•BM=×1×(1-x)=-x,
S△PCQ=CQ•PN=×(1-x)(1-x)=-x+x2,
∴S四邊形PBCQ=S△PBC+S△PCQ=x2-x+1,
即y=x2-x+1(0≤x).

(3)△PCQ可能成為等腰三角形.
①當點P與點A重合,點Q與點D重合,這時PQ=QC,△PCQ是等腰三角形,此時x=0;
②當點Q在邊DC的延長線上,且CP=CQ時,△PCQ是等腰三角形(如圖3),
此時,QN=PM=x,CP=-x,CN=CP=1-x,
∴CQ=QN-CN=x-(1-x)=x-1,
-x=x-1時,得x=1.
③BP⊥AC,Q點與C點重合,PQ=CP,△PCQ不存在.
綜上所述,x=0或1時,△PCQ為等腰三角形.
點評:解答本題要充分利用正方形的特殊性質(zhì).注意在正方形中的特殊三角形的應用,搞清楚矩形、菱形、正方形中的三角形的三邊關系,可有助于提高解題速度和準確率.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《四邊形》(04)(解析版) 題型:解答題

(2002•上海)操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經(jīng)過點B,另一邊與射線DC相交于點Q.
探究:設A、P兩點間的距離為x.
(1)點Q在CD上時,線段PQ與線段PB之間有怎樣的大小關系?試證明你觀察得到的結論(如圖1);
(2)點Q邊CD上時,設四邊形PBCQ的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)的定義域(如圖2);
(3)點P在線段AC上滑動時,△PCQ是否可能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點Q的位置,并求出相應的x的值;如果不可能,試說明理由(如圖3).(圖4、圖5、圖6的形狀、大小相同,圖4供操作、實驗用,圖5和圖6備用).

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2002•上海)操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經(jīng)過點B,另一邊與射線DC相交于點Q.
探究:設A、P兩點間的距離為x.
(1)點Q在CD上時,線段PQ與線段PB之間有怎樣的大小關系?試證明你觀察得到的結論(如圖1);
(2)點Q邊CD上時,設四邊形PBCQ的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)的定義域(如圖2);
(3)點P在線段AC上滑動時,△PCQ是否可能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點Q的位置,并求出相應的x的值;如果不可能,試說明理由(如圖3).(圖4、圖5、圖6的形狀、大小相同,圖4供操作、實驗用,圖5和圖6備用).

查看答案和解析>>

科目:初中數(shù)學 來源:2009年中考數(shù)學全真模擬試卷(9)(解析版) 題型:解答題

(2002•上海)操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經(jīng)過點B,另一邊與射線DC相交于點Q.
探究:設A、P兩點間的距離為x.
(1)點Q在CD上時,線段PQ與線段PB之間有怎樣的大小關系?試證明你觀察得到的結論(如圖1);
(2)點Q邊CD上時,設四邊形PBCQ的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)的定義域(如圖2);
(3)點P在線段AC上滑動時,△PCQ是否可能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點Q的位置,并求出相應的x的值;如果不可能,試說明理由(如圖3).(圖4、圖5、圖6的形狀、大小相同,圖4供操作、實驗用,圖5和圖6備用).

查看答案和解析>>

科目:初中數(shù)學 來源:2002年上海市中考數(shù)學試卷(解析版) 題型:解答題

(2002•上海)操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經(jīng)過點B,另一邊與射線DC相交于點Q.
探究:設A、P兩點間的距離為x.
(1)點Q在CD上時,線段PQ與線段PB之間有怎樣的大小關系?試證明你觀察得到的結論(如圖1);
(2)點Q邊CD上時,設四邊形PBCQ的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)的定義域(如圖2);
(3)點P在線段AC上滑動時,△PCQ是否可能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點Q的位置,并求出相應的x的值;如果不可能,試說明理由(如圖3).(圖4、圖5、圖6的形狀、大小相同,圖4供操作、實驗用,圖5和圖6備用).

查看答案和解析>>

同步練習冊答案