分析 先根據(jù)平行線的性質(zhì)得出∠1=∠2,再由正方形的性質(zhì)得出∠ABD=45°,由S陰影=S扇形ABD+S扇形ENM即可得出結(jié)論.
解答 解:∵AN∥BM,
∴∠1=∠2.
∵四邊形ABCD是正方形,
∴∠ABD=45°,
∴S陰影=S扇形ABD+S扇形ENM=$\frac{45π×16}{360}$+$\frac{90π×16}{360}$=2π+4π=6π.
故答案為:6π.
點(diǎn)評 本題考查的是扇形面積的計(jì)算,解題的關(guān)鍵是深入觀察圖形,準(zhǔn)確找出圖形中隱含的數(shù)量關(guān)系,靈活運(yùn)用扇形的面積公式來分析、解答.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com