(2010•錦州)如圖是由幾個相同的小正方體搭成的一個幾何體,它的左視圖是( )

A.
B.
C.
D.
【答案】分析:找到從左面看所得到的圖形即可.
解答:解:從物體左面看,左邊2列,右邊是1列.故選A.
點評:本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖,解答時學(xué)生易將三種視圖混淆而錯誤的選其它選項.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2010•錦州)如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點,且x1>x2,與y軸交于點C(0,4),其中x1,x2是方程x2-2x-8=0的兩個根.
(1)求這條拋物線的解析式;
(2)點P是線段AB上的動點,過點P作PE∥AC,交BC于點E,連接CP,當(dāng)△CPE的面積最大時,求點P的坐標(biāo);
(3)探究:若點Q是拋物線對稱軸上的點,是否存在這樣的點Q,使△QBC成為等腰三角形?若存在,請直接寫出所有符合條件的點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•錦州)如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點,且x1>x2,與y軸交于點C(0,4),其中x1,x2是方程x2-2x-8=0的兩個根.
(1)求這條拋物線的解析式;
(2)點P是線段AB上的動點,過點P作PE∥AC,交BC于點E,連接CP,當(dāng)△CPE的面積最大時,求點P的坐標(biāo);
(3)探究:若點Q是拋物線對稱軸上的點,是否存在這樣的點Q,使△QBC成為等腰三角形?若存在,請直接寫出所有符合條件的點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)模擬試卷(7)(解析版) 題型:解答題

(2010•錦州)如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點,且x1>x2,與y軸交于點C(0,4),其中x1,x2是方程x2-2x-8=0的兩個根.
(1)求這條拋物線的解析式;
(2)點P是線段AB上的動點,過點P作PE∥AC,交BC于點E,連接CP,當(dāng)△CPE的面積最大時,求點P的坐標(biāo);
(3)探究:若點Q是拋物線對稱軸上的點,是否存在這樣的點Q,使△QBC成為等腰三角形?若存在,請直接寫出所有符合條件的點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年遼寧省錦州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•錦州)如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點,且x1>x2,與y軸交于點C(0,4),其中x1,x2是方程x2-2x-8=0的兩個根.
(1)求這條拋物線的解析式;
(2)點P是線段AB上的動點,過點P作PE∥AC,交BC于點E,連接CP,當(dāng)△CPE的面積最大時,求點P的坐標(biāo);
(3)探究:若點Q是拋物線對稱軸上的點,是否存在這樣的點Q,使△QBC成為等腰三角形?若存在,請直接寫出所有符合條件的點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省某市新人教版中考數(shù)學(xué)模擬試卷(6)(解析版) 題型:解答題

(2010•錦州)如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點,且x1>x2,與y軸交于點C(0,4),其中x1,x2是方程x2-2x-8=0的兩個根.
(1)求這條拋物線的解析式;
(2)點P是線段AB上的動點,過點P作PE∥AC,交BC于點E,連接CP,當(dāng)△CPE的面積最大時,求點P的坐標(biāo);
(3)探究:若點Q是拋物線對稱軸上的點,是否存在這樣的點Q,使△QBC成為等腰三角形?若存在,請直接寫出所有符合條件的點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案