七年級我們曾學(xué)過“兩點之間線段最短”的知識,?衫盟鼇斫鉀Q兩條線段和最小的相關(guān)問題,下面是大家非常熟悉的一道習(xí)題:
如圖1,已知,A,B在直線l的同一側(cè),在l上求作一點,使得PA+PB最。
我們只要作點B關(guān)于l的對稱點B′,(如圖2所示)根據(jù)對稱性可知,PB=PB'.因此,求AP+BP最小就相當(dāng)于求AP+PB′最小,顯然當(dāng)A、P、B′在一條直線上時AP+PB′最小,因此連接AB',與直線l的交點就是要求的點P.
有很多問題都可用類似的方法去思考解決.
探究:
(1)如圖3,正方形ABCD的邊長為2,E為BC的中點,P是BD上一動點.連接EP,CP,則EP+CP的最小值是______
【答案】
分析:(1)由正方形的性質(zhì)可得點A是點C關(guān)于BD的對稱點,連接AE,則AE就是EP+CP的最小值;
(2)找點C關(guān)于x軸的對稱點C',連接AC',則AC'與x軸的交點即為點D的位置,先求出直線AC'的解析式,繼而可得出點D的坐標(biāo).
(3)分別作點A關(guān)于OM的對稱點A'、關(guān)于ON的對稱點A'',連接A'A'',則A'A''與OM交點為點B的位置,與ON交點為C的位置.
解答:解:(1)∵點A是點C關(guān)于BD的對稱點,連接AE,則AE就是EP+CP的最小值,
∴EP+CP的最小值=AE=
;
(2)作點C關(guān)于x軸的對稱點C',連接AC',則AC'與x軸的交點即為點D的位置,
∵點C'坐標(biāo)為(0,-2),點A坐標(biāo)為(6,4),
∴直線C'A的解析式為:y=x-2,
故點D的坐標(biāo)為(2,0);
(3)分別作點A關(guān)于OM的對稱點A'、關(guān)于ON的對稱點A'',連接A'A'',則A'A''與OM交點為點B的位置,與ON交點為C的位置;
如圖所示:點B、C即為所求作的點.
點評:此題考查了利用軸對稱求解最短路徑的問題,求解模式題意已經(jīng)給出,注意仔細理解,靈活運用題目所給的信息.
科目:初中數(shù)學(xué)
來源:2012年江蘇省常州市外國語學(xué)校中考數(shù)學(xué)三模試卷(5月份)(解析版)
題型:解答題
七年級我們曾學(xué)過“兩點之間線段最短”的知識,?衫盟鼇斫鉀Q兩條線段和最小的相關(guān)問題,下面是大家非常熟悉的一道習(xí)題:
如圖1,已知,A,B在直線l的同一側(cè),在l上求作一點,使得PA+PB最小.
我們只要作點B關(guān)于l的對稱點B′,(如圖2所示)根據(jù)對稱性可知,PB=PB'.因此,求AP+BP最小就相當(dāng)于求AP+PB′最小,顯然當(dāng)A、P、B′在一條直線上時AP+PB′最小,因此連接AB',與直線l的交點就是要求的點P.
有很多問題都可用類似的方法去思考解決.
探究:
(1)如圖3,正方形ABCD的邊長為2,E為BC的中點,P是BD上一動點.連接EP,CP,則EP+CP的最小值是______
查看答案和解析>>