【題目】探究題
如圖,點O是等邊△ABC內(nèi)一點,∠A OB﹦1100,∠BOC﹦a,將△BOC繞點C按順時鐘方向旋轉(zhuǎn)60O得△ADC,連接OD.
(1)求證:△COD是等邊三角形;
(2)當a﹦150O時,試判斷△AOD的形狀,并說明理由;
(3)探究:當僅為多少度時,△AOD是等腰三角形?
【答案】(1)等邊三角形;(2)直角三角形;(3)當的度數(shù)為或或時,△AOD是等腰三角形.
【解析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得出OC=OD,結(jié)合題意即可證得結(jié)論;
(2)結(jié)合(1)的結(jié)論可作出判斷;
(3)找到變化中的不變量,然后利用旋轉(zhuǎn)及全等的性質(zhì)即可做出解答.
(1)證明:∵將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得△ADC
∴CO=CD,∠OCD=60°
∴△COD是等邊三角形.
(2)解:當=150°時,△AOD是直角三角形
理由是:∵△BOC≌△ADC
∴∠ADC=∠BOC=150°
又∵△COD是等邊三角形
∴∠ODC=60°[來
∴∠ADO=∠ADC -∠ODC=90°,即△AOD是直角三角形.
(3)解:①要使AO=AD,需∠AOD=∠ADO
∵∠AOD= = ,∠ADO=
∴=
∴
②要使OA=OD,需∠OAD=∠ADO
∵∠OAD=(∠AOD+∠ADO)==
∴=
∴
③要使DO=DA,需∠OAD=∠AOD.
∵∠AOD= = ,∠OAD=∴=,解得
綜上所述:當的度數(shù)為或或時,△AOD是等腰三角形.
“點睛”本題以“空間與圖形”中的核心知識(如等邊三角形)的性質(zhì)、全等三角形的性質(zhì)與證明、直角三角形的判定、多邊形內(nèi)角和等)為載體,內(nèi)容由淺入深,層層遞進,試題中幾何演繹推理的難度適中,蘊含著豐富的思想方法(如運動變化、數(shù)形結(jié)合、分類討論、方程思想等)能較好地考查學生的推理、探究及解決問題的能力.
科目:初中數(shù)學 來源: 題型:
【題目】把3個長為a,寬為b(a>b)的長方形如圖放置,恰好拼成一個大長方形,
(1)大長方形的面積S=____________(用含字母a、b的代數(shù)式表示);
(2)a、b之間的等量關(guān)系是:__________________;
(3)當b=2時,面積S=?b=3時,周長C=?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列關(guān)系式中,變量x=-1時,變量y=6的是( )
A. y=3x+3B. y=-3x+3C. y=3x–3D. y=-3x–3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我市美化工程招標時,有甲、乙兩個工程隊投標.經(jīng)測算:甲隊單獨完成這項工程需要60天;若由甲隊先做20天,剩下的工程由甲、乙合做24天可完成.
(1)乙隊單獨完成這項工程需要多少天?
(2)甲隊施工一天,需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內(nèi)完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨完成該工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用配方法解一元二次方程x2﹣6x﹣4=0,下列變形正確的是( )
A.(x﹣6)2=﹣4+36
B.(x﹣6)2=4+36
C.(x﹣3)2=﹣4+9
D.(x﹣3)2=4+9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設二次函數(shù)y=(x﹣3)2﹣4圖象的對稱軸為直線l,若點M在直線l上,則點M的坐標可能是( )
A.(1,0)
B.(3,0)
C.(﹣3,0)
D.(0,﹣4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表記錄了一次實驗中的時間和溫度的數(shù)據(jù),寫出T與t的關(guān)系式____.
時間t(分) | 0 | 5 | 10 | 15 | 20 | 25 |
溫度T(℃) | 10 | 25 | 40 | 55 | 70 | 85 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com